Пример #1
0
def setupLayerRN(params, neuronModel, cell_params, injectionPopulations, popPoissionNoiseSource, populationsRN):
    
    #create a single RN population divided into virtual clusters one per VR
    #this will be fed by the noise population and modulated by the relevant ratecoded neuron 
    #to create a rate coded population
    
    numVR = params['NUM_VR']
    rnClusterSize = int(params['CLUSTER_SIZE']) #* params['NETWORK_SCALE']
    rnPopSize = rnClusterSize * numVR
    popName = 'popRN'
    popRN = spynnaker.Population(rnPopSize, neuronModel, cell_params, label=popName)
    populationsRN.append(popRN)

    #connect one random poisson neuron to each RN neuron
    weight = params['WEIGHT_POISSON_TO_CLUSTER_RN']
    delay =  params['DELAY_POISSON_TO_CLUSTER_RN']
    connections = utils.fromList_OneRandomSrcForEachTarget(popPoissionNoiseSource._size,popRN._size,weight,delay)
    projPoissonToClusterRN = spynnaker.Projection(popPoissionNoiseSource, popRN, spynnaker.FromListConnector(connections), target='excitatory')
    
    vr = 0
    for injectionPopn in injectionPopulations:
        connections = list()
        for fromNeuronIdx in range(injectionPopn._size):
            #connect the correct VR ratecode neuron in popRateCodeSpikes to corresponding subsection (cluster) of the RN population
            weight = params['WEIGHT_RATECODE_TO_CLUSTER_RN']
            firstIndex = vr * rnClusterSize
            lastIndex = firstIndex + rnClusterSize - 1
            connections += utils.fromList_SpecificNeuronToRange(fromNeuronIdx,firstIndex,lastIndex,weight,params['MIN_DELAY_RATECODE_TO_CLUSTER_RN'],params['MAX_DELAY_RATECODE_TO_CLUSTER_RN'])
            vr  = vr + 1
        #after the last neuron in the current injection pop, create a projection to the RN  
        projRateToClusterRN = spynnaker.Projection(injectionPopn, popRN, spynnaker.FromListConnector(connections), target='excitatory')
        print 'Added projection to RN of ', len(connections), " connections from injection pop ", injectionPopn.label, "(size ", injectionPopn._size,")"
def createIntraPopulationWTA(popn, numClusters, weight, delay, connectivity,
                             createSingleProjection):
    allConnections = []
    clusterSize = popn._size / numClusters
    for i in range(numClusters):
        for j in range(numClusters):
            if i != j:
                srcFirstIdx = i * clusterSize
                srcLastIdx = srcFirstIdx + clusterSize - 1
                targFirstIdx = j * clusterSize
                targLastIdx = targFirstIdx + clusterSize - 1
                connections = fromList_fromRangeToRange(
                    srcFirstIdx, srcLastIdx, targFirstIdx, targLastIdx, weight,
                    delay, delay, connectivity)
                if (createSingleProjection):
                    allConnections += connections
                else:
                    projInhibitory = spynnaker.Projection(
                        popn,
                        popn,
                        spynnaker.FromListConnector(connections),
                        target='inhibitory')

    #print ' WTA connections', projInhibitory.getWeights()
    if (createSingleProjection):
        projInhibitory = spynnaker.Projection(
            popn,
            popn,
            spynnaker.FromListConnector(allConnections),
            target='inhibitory')
Пример #3
0
def setupLayerAN(params, settings, neuronModel, cell_params, popClassActivation, popPoissionNoiseSource, populationsPN, populationsAN,learning,projectionsPNAN):
    
    #create an Association Neuron AN cluster population per class
    #this will be fed by:
    #1) PN clusters via plastic synapses
    #2) Class activation to innervate the correct AN cluster for a given input  
    #3) laterally inhibit between AN clusters 
    

    numClasses = params['NUM_CLASSES']
    
    anClusterSize = int(params['CLUSTER_SIZE']) #* params['NETWORK_SCALE']
    
    for an in range(numClasses):
        popName = 'popClusterAN_'  + str(an) ;
        popClusterAN = spynnaker.Population(anClusterSize, neuronModel, cell_params, label=popName)
        populationsAN.append(popClusterAN)
        
        #connect neurons in every PN popn to x% (e.g 50%) neurons in this AN cluster 
        for pn in range(len(populationsPN)):
            if learning:
                projLabel = 'Proj_PN' + str(pn) + '_AN' + str(an)
                projClusterPNToClusterAN = connectClusterPNtoAN(params,populationsPN[pn],popClusterAN,float(settings['OBSERVATION_EXPOSURE_TIME_MS']),projLabel)
                projectionsPNAN.append(projClusterPNToClusterAN) #keep handle to use later for saving off weights at end of learning
            else:
                #Without plasticity, create PNAN FromList connectors using weights saved during learning stage
                connections = utils.loadListFromFile(getWeightsFilename(settings,'PNAN',pn,an))
                #print 'Loaded weightsList[',pn,',',an,']',connections
                tupleList = utils.createListOfTuples(connections) #new version only accepts list of tuples not list of lists
                #print 'tupleList[',pn,',',an,']',tupleList
                conn = spynnaker.FromListConnector(tupleList)
                projClusterPNToClusterAN = spynnaker.Projection(populationsPN[pn], popClusterAN,conn, target='excitatory')

        if learning:
            #use the class activity input neurons to create correlated activity during learining in the corresponding class cluster
            weight = params['WEIGHT_CLASS_EXCITATION_TO_CLUSTER_AN']
            connections = utils.fromList_SpecificNeuronToAll(an,anClusterSize,weight,params['MIN_DELAY_CLASS_ACTIVITY_TO_CLUSTER_AN'],params['MAX_DELAY_CLASS_ACTIVITY_TO_CLUSTER_AN'])
            projClassActivityToClusterAN = spynnaker.Projection(popClassActivation, popClusterAN, spynnaker.FromListConnector(connections), target='excitatory')
        
        else: #testing  
            #send spikes on these outputs back to correct host port , these will be used to determine winner etc
            anHostReceivePort = int(settings['AN_HOST_RECEIVE_PORT']) 
            ExternalDevices.activate_live_output_for(popClusterAN,port=anHostReceivePort)
            
    #connect each AN cluster to inhibit every other AN cluster
    utils.createInterPopulationWTA(populationsAN,params['WEIGHT_WTA_AN_AN'],params['DELAY_WTA_AN_AN'],float(params['CONNECTIVITY_WTA_AN_AN']))
    
    #inhibit other non-corresponding class clusters
    if learning:
        weight = params['WEIGHT_CLASS_INHIBITION_TO_CLUSTER_AN']
        for activeCls in range(numClasses):
            connections = utils.fromList_SpecificNeuronToAll(activeCls,anClusterSize,weight,params['MIN_DELAY_CLASS_ACTIVITY_TO_CLUSTER_AN'],params['MAX_DELAY_CLASS_ACTIVITY_TO_CLUSTER_AN'])
            for an in range(numClasses):
                if an != activeCls:
                    projClassActivityToClusterAN = spynnaker.Projection(popClassActivation, populationsAN[an], spynnaker.FromListConnector(connections), target='inhibitory')
Пример #4
0
def connectClusterPNtoAN(params,popClusterPN,popClusterAN, observationExposureTimeMs, projLabel=''):
    
    #Using custom Hebbian-style plasticity, connect neurons in specfied PN cluster to x% neurons in specified AN cluster 
    
    startWeightPNAN = float(params['STARTING_WEIGHT_PN_AN'])
    delayPNAN =  int(params['DELAY_PN_AN'])
    connectivity = float(params['CONNECTIVITY_PN_AN'])
    
    #STDP curve parameters
    tau = float(params['STDP_TAU_PN_AN']) 
    wMin = float(params['STDP_WMIN_PN_AN']) 
    wMax = float(params['STDP_WMAX_PN_AN']) 
    
    gainScaling = float(params['STDP_SCALING_PN_AN'])
    
    '''
    #this setting was tuned for a 120ms learning window
    #rescale it according to actual window used. ie for longer window, slow down learning rate
    tweak = 120.0/float(observationExposureTimeMs)
    gainScaling = gainScaling * tweak
    print "Weight gain scaled by factor of ", tweak  
    '''
    
    timingDependence = spynnaker.SpikePairRule(tau_plus=tau, tau_minus=tau, nearest=True)
    weightDependence = spynnaker.AdditiveWeightDependence(w_min=wMin, w_max=wMax, A_plus=gainScaling, A_minus=-gainScaling)
    stdp_model = spynnaker.STDPMechanism(timing_dependence = timingDependence, weight_dependence = weightDependence)
    probConnector = spynnaker.FixedProbabilityConnector(connectivity, weights=startWeightPNAN, delays=delayPNAN, allow_self_connections=True)
    projClusterPNToClusterAN = spynnaker.Projection(popClusterPN, popClusterAN,probConnector,synapse_dynamics = spynnaker.SynapseDynamics(slow = stdp_model), target='excitatory', label=projLabel)
    return projClusterPNToClusterAN
Пример #5
0
 def nealprojection(self, pre_neurons, post_neurons, connector_list,
                    inh_exc):
     #projection method for SpiNNaker
     conn_list = spinn.FromListConnector(connector_list)
     spinn.Projection(pre_neurons,
                      post_neurons,
                      conn_list,
                      receptor_type=inh_exc)
Пример #6
0
def test(spikeTimes, trained_weights,label):

    #spikeTimes = extractSpikes(sample)
    runTime = int(max(max(spikeTimes)))+100

    ##########################################

    sim.setup(timestep=1)

    pre_pop = sim.Population(input_size, sim.SpikeSourceArray, {'spike_times': spikeTimes}, label="pre_pop")
    post_pop = sim.Population(output_size, sim.IF_curr_exp , cell_params_lif, label="post_pop")
   
    if len(trained_weights) > input_size:
        weigths = [[0 for j in range(output_size)] for i in range(input_size)] #np array? size 1024x25
        k=0
        for i in range(input_size):
            for j in range(output_size):
                weigths[i][j] = trained_weights[k]
                k += 1
    else:
        weigths = trained_weights

    connections = []
    
    #k = 0
    for n_pre in range(input_size): # len(untrained_weights) = input_size
        for n_post in range(output_size): # len(untrained_weight[0]) = output_size; 0 or any n_pre
            #connections.append((n_pre, n_post, weigths[n_pre][n_post]*(wMax), __delay__))
            connections.append((n_pre, n_post, weigths[n_pre][n_post]*(wMax)/max(trained_weights), __delay__)) #
            #k += 1

    prepost_proj = sim.Projection(pre_pop, post_pop, sim.FromListConnector(connections), synapse_type=sim.StaticSynapse(), receptor_type='excitatory') # no more learning !!
    #inhib_proj = sim.Projection(post_pop, post_pop, sim.AllToAllConnector(), synapse_type=sim.StaticSynapse(weight=inhibWeight, delay=__delay__), receptor_type='inhibitory')
    # no more lateral inhib

    post_pop.record(['v', 'spikes'])
    sim.run(runTime)

    neo = post_pop.get_data(['v', 'spikes'])
    spikes = neo.segments[0].spiketrains
    v = neo.segments[0].filter(name='v')[0]
    f1=pplt.Figure(
    # plot voltage 
    pplt.Panel(v, ylabel="Membrane potential (mV)", xticks=True, yticks=True, xlim=(0, runTime+100)),
    # raster plot
    pplt.Panel(spikes, xlabel="Time (ms)", xticks=True, yticks=True, markersize=2, xlim=(0, runTime+100)),
    title='Test with label ' + str(label),
    annotations='Test with label ' + str(label)
                )
    f1.save('plot/'+str(trylabel)+str(label)+'_test.png')
    f1.fig.texts=[]
    print("Weights:{}".format(prepost_proj.get('weight', 'list')))

    weight_list = [prepost_proj.get('weight', 'list'), prepost_proj.get('weight', format='list', with_address=False)]
    #predict_label=
    sim.end()
    return spikes
Пример #7
0
def load(path, filename, input_layer):

    layers = load_assembly(path, filename)
    projections = []
    for i in range(len(layers) - 1):
        filepath = os.path.join(path, layers[i + 1].label)
        assert os.path.isfile(filepath), \
            "Connections were not found at specified location."
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')
            warnings.warn('deprecated', UserWarning)
            if i == 0:
                projections.append(
                    sim.Projection(input_layer, layers[i + 1],
                                   sim.FromFileConnector(filepath)))
                #projections.append(sim.Projection(input_layer, layers[i+1], sim.OneToOneConnector(), synapse_type=sim.StaticSynapse(weight=5, delay=1)))
            else:
                projections.append(
                    sim.Projection(layers[i], layers[i + 1],
                                   sim.FromFileConnector(filepath)))
    return layers, projections
def createInterPopulationWTA(populations, weight, delay, connectivity):
    probConnector = spynnaker.FixedProbabilityConnector(
        connectivity,
        weights=weight,
        delays=delay,
        allow_self_connections=True)
    for i in range(len(populations)):
        for j in range(len(populations)):
            if i != j:
                projInhibitory = spynnaker.Projection(populations[i],
                                                      populations[j],
                                                      probConnector,
                                                      target='inhibitory')
Пример #9
0
def setupLayerAN(params, settings, neuronModel, cell_params, popClassActivation, popPoissionNoiseSource, populationsPN, populationsAN,learning,projectionsPNAN):
    
    #create an Association Neuron AN cluster population per class
    #this will be fed by:
    #1) PN clusters via plastic synapses
    #2) Class activation to innervate the correct AN cluster for a given input  
    #3) laterally inhibit between AN clusters 
    

    numClasses = params['NUM_CLASSES']
    
    anClusterSize = params['CLUSTER_SIZE'] * params['NETWORK_SCALE']
    
    for an in range(numClasses):
        popName = 'popClusterAN_'  + str(an) ;
        popClusterAN = spynnaker.Population(anClusterSize, neuronModel, cell_params, label=popName)
        populationsAN.append(popClusterAN)
        
        #connect neurons in every PN popn to x% (e.g 50%) neurons in this AN cluster 
        for pn in range(len(populationsPN)):
            if learning:
                projLabel = 'Proj_PN' + str(pn) + '_AN' + str(an)
                projClusterPNToClusterAN = connectClusterPNtoAN(params,populationsPN[pn],popClusterAN,projLabel)
                projectionsPNAN.append(projClusterPNToClusterAN) #keep handle to use later for saving off weights at end of learning
            else:
                #Without plasticity, create PNAN FromList connectors using weights saved during learning stage
                connections = utils.loadListFromFile(getWeightsFilename(settings,'PNAN',pn,an))
                #print 'Loaded weightsList[',pn,',',an,']',connections
                projClusterPNToClusterAN = spynnaker.Projection(populationsPN[pn], popClusterAN,spynnaker.FromListConnector(connections), target='excitatory')

        if learning:
            #use the class activity input neurons to create correlated activity during learining in the corresponding class cluster
            weight = params['WEIGHT_CLASS_ACTIVITY_TO_CLUSTER_AN']
            connections = utils.fromList_SpecificNeuronToAll(an,anClusterSize,weight,params['MIN_DELAY_CLASS_ACTIVITY_TO_CLUSTER_AN'],params['MAX_DELAY_CLASS_ACTIVITY_TO_CLUSTER_AN'])
            projClassActivityToClusterAN = spynnaker.Projection(popClassActivation, popClusterAN, spynnaker.FromListConnector(connections), target='excitatory')
        
    #connect each AN cluster to inhibit every other AN cluster
    utils.createInterPopulationWTA(populationsAN,params['WEIGHT_WTA_AN_AN'],params['DELAY_WTA_AN_AN'],float(params['CONNECTIVITY_WTA_AN_AN']))
Пример #10
0
def setupProjection_PN_KC(pn_population,kc_population):

    connectionList = list()                                        # Connection list between PN and KC
    for each_kc_cell in xrange(NUM_KC_CELLS):

        count          = 6
        selectedCells = random.sample(xrange(NUM_PN_CELLS),count) 

        for each_pn_cell in selectedCells:
            single_coonection = (each_pn_cell,each_kc_cell)
            connectionList.append(single_coonection)

    pnkcProjection = spynnaker.Projection(pn_population,
                                          kc_population,
                                          spynnaker.FromListConnector(connectionList),
                                          spynnaker.StaticSynapse(weight=WEIGHT_PN_KC, delay=DELAY_PN_KC))
    return pnkcProjection
Пример #11
0
def connectClusterPNtoAN(params,popClusterPN,popClusterAN, projLabel=''):
    
    #Using custom Hebbian-style plasticity, connect neurons in specfied PN cluster to x% neurons in specified AN cluster 
    
    startWeightPNAN = float(params['STARTING_WEIGHT_PN_AN'])
    delayPNAN =  int(params['DELAY_PN_AN'])
    connectivity = float(params['CONNECTIVITY_PN_AN'])
    
    #STDP curve parameters
    tau = float(params['STDP_TAU_PN_AN']) 
    wMin = float(params['STDP_WMIN_PN_AN']) 
    wMax = float(params['STDP_WMAX_PN_AN']) 
    gainScaling = float(params['STDP_SCALING_PN_AN']) 
    
    timingDependence = spynnaker.SpikePairRule(tau_plus=tau, tau_minus=tau, nearest=True)
    weightDependence = spynnaker.AdditiveWeightDependence(w_min=wMin, w_max=wMax, A_plus=gainScaling, A_minus=-gainScaling)
    stdp_model = spynnaker.STDPMechanism(timing_dependence = timingDependence, weight_dependence = weightDependence)
    probConnector = spynnaker.FixedProbabilityConnector(connectivity, weights=startWeightPNAN, delays=delayPNAN, allow_self_connections=True)
    projClusterPNToClusterAN = spynnaker.Projection(popClusterPN, popClusterAN,probConnector,synapse_dynamics = spynnaker.SynapseDynamics(slow = stdp_model), target='excitatory', label=projLabel)
    return projClusterPNToClusterAN
def createInterPopulationWTA(populations, weight, delay, connectivity):
    probConnector = spynnaker.FixedProbabilityConnector(
        connectivity,
        weights=weight,
        delays=delay,
        allow_self_connections=True)
    numPopulations = len(populations)
    if numPopulations > 1:
        popCreatedCount = 0
        totalProjections = numPopulations * (numPopulations - 1)
        for i in range(numPopulations):
            for j in range(numPopulations):
                if i != j:
                    projInhibitory = spynnaker.Projection(populations[i],
                                                          populations[j],
                                                          probConnector,
                                                          target='inhibitory')
                    popCreatedCount = popCreatedCount + 1
            print 'Created  ', popCreatedCount, ' of ', totalProjections, ' (', 100 * float(
                popCreatedCount) / float(totalProjections), '%)'
        #print ' WTA connections', projInhibitory.getWeights()
    else:
        print 'No inter-projections created , only one population provided'
Пример #13
0
def setupProjection_PN_KC(pn_population, kc_population):

    WEIGHT_PN_KC = 5
    DELAY_PN_KC = 1.0
    NUM_KC_CELLS = 2000
    NUM_PN_CELLS = 784

    connectionList = list()  # Build up a connection list between PN and KC
    for each_kc_cell in xrange(NUM_KC_CELLS):

        count = random.randint(
            5, 7)  # How many pn_cells will connect to this kc_cell
        selectedCells = random.sample(
            xrange(NUM_PN_CELLS), count)  # Index of randomly selected PN cells

        for each_pn_cell in selectedCells:
            single_coonection = (each_pn_cell, each_kc_cell)
            connectionList.append(single_coonection)

    pnkcProjection = spynnaker.Projection(
        pn_population, kc_population,
        spynnaker.FromListConnector(connectionList),
        spynnaker.StaticSynapse(weight=WEIGHT_PN_KC, delay=DELAY_PN_KC))
    return pnkcProjection
weight_to_spike = 2.0
delay = 17

loopConnections = list()
for i in range(0, nNeurons):
    singleConnection = (i, ((i + 1) % nNeurons), weight_to_spike, delay)
    loopConnections.append(singleConnection)

injectionConnection = [(0, 0, weight_to_spike, 1)]
spikeArray = {'spike_times': [[0, 1050]]}
populations.append(p.Population(nNeurons, p.IF_curr_exp, cell_params_lif,
                   label='pop_1'))
populations.append(p.Population(1, p.SpikeSourceArray, spikeArray,
                   label='inputSpikes_1'))

projections.append(p.Projection(populations[0], populations[0],
                   p.FromListConnector(loopConnections)))
projections.append(p.Projection(populations[1], populations[0],
                   p.FromListConnector(injectionConnection)))

populations[0].record_v()
populations[0].record_gsyn()
populations[0].record()

p.run(runtime)

v = None
gsyn = None
spikes = None

v = populations[0].get_v(compatible_output=True)
gsyn = populations[0].get_gsyn(compatible_output=True)
Пример #15
0
testpop = p.Population(200, p.IF_curr_exp, cell_params_lif, label='ifcurr')
testpop.record()

inppop = p.Population(100,
                      p.SpikeSourcePoisson, {
                          'rate': 120,
                          'duration': 8000
                      },
                      label="poisson_PLOT")
inppop.stream()
inp2pop = p.Population(100, p.SpikeSourcePoisson, {
    'rate': 50,
    'duration': 8000
})

proj = p.Projection(inppop, myopop,
                    p.OneToOneConnector(weights=1.00, delays=1.0))
proj2 = p.Projection(inp2pop, myopop2,
                     p.OneToOneConnector(weights=1.0, delays=1.0))

#projout=p.Projection(myopop,testpop,p.OneToOneConnector(weights=0.5,delays=1.0))

#emptypop = p.Population(200, p.IF_curr_exp, cell_params_lif, label='dummy')
#dummyproj = p.Projection(emptypop, testpop, p.OneToOneConnector(weights=1.0,delays=1.0))

#inppop.record()
#myopop.record()

poispops = []
for k, (mini, maxi) in [(0xFEFFFE21, (1220., 2880.))]:  # angle measurement
    #                      (0xFEFFFE03,(-20.,1000.)), # displacement
    #                      (0xFEFFFE07,(-20.,1000.)), # should not go negative, but can overflow
Пример #16
0
                                              database_notify_port_num=19996)
sim.external_devices.activate_live_output_for(input1,
                                              database_notify_host="localhost",
                                              database_notify_port_num=19998)

timing_rule = sim.SpikePairRule(tau_plus=20.0,
                                tau_minus=20.0,
                                A_plus=0.5,
                                A_minus=0.5)
weight_rule = sim.AdditiveWeightDependence(w_max=25.0, w_min=0.0)
stdp_model = sim.STDPMechanism(timing_dependence=timing_rule,
                               weight_dependence=weight_rule,
                               weight=2.0,
                               delay=1)
stdp_projection = sim.Projection(pre_pop,
                                 post_pop,
                                 sim.OneToOneConnector(),
                                 synapse_type=stdp_model)
input_projection1 = sim.Projection(input1,
                                   pre_pop,
                                   sim.OneToOneConnector(),
                                   synapse_type=sim.StaticSynapse(weight=5,
                                                                  delay=1))

pre_pop.record(["spikes", "v"])
post_pop.record(["spikes", "v"])
simtime = 100

k = PyKeyboard()


def receive_spikes(label, time, neuron_ids):
teachpop = p.Population(nn_teach, p.SpikeSourcePoisson, {
    'rate': 100,
    'duration': duration
})

#teachpop.record()

postpop = p.Population(nn_post, p.IF_cond_exp, cell_params)
#postpop.record()

connteach = p.OneToOneConnector(
    weights=0.0,
    delays=1.0)  #FromListConnector([(i,i,0.0,1.0) for i in range(nn)])
#randconn = p.FixedProbabilityConnector(0.5,weights=0.0,delays=1.0)
#noisesyn = p.Projection(noisepop,postpop,connteach,target='inhibitory')
teachsyn = p.Projection(teachpop, postpop, connteach, target='inhibitory')

# plasticity

wdep_grcpcsynapsis = p.AdditiveWeightDependence(w_min=0.0,
                                                w_max=0.5,
                                                A_plus=0.0015,
                                                A_minus=0.0018)
tdep_grcpcsynapsis = p.SpikePairRuleSinAdd(tau_minus=50.,
                                           tau_plus=50.,
                                           delay=100.0,
                                           nearest=False)  # delay 70-100
stdp_grcpcsynapsis = p.STDPMechanism(timing_dependence=tdep_grcpcsynapsis,
                                     weight_dependence=wdep_grcpcsynapsis,
                                     voltage_dependence=None)
syndyn_grcpcsynapsis = p.SynapseDynamics(slow=stdp_grcpcsynapsis)
source = sim.Population(n_atoms, model, cell_params, label='source_layer')
target = sim.Population(n_atoms, model, cell_params, label='target_layer')

target.set_constraint(PlacerChipAndCoreConstraint(0, 1))
# Define learning
# Plastic Connections between pre_pop and post_pop
stdp_model = sim.STDPMechanism(
    timing_dependence=sim.SpikePairRule(tau_plus=20.,
                                        tau_minus=20.0,
                                        nearest=True),
    weight_dependence=sim.AdditiveWeightDependence(w_min=0,
                                                   w_max=0.9,
                                                   A_plus=0.02,
                                                   A_minus=0.02))
structure_model_w_stdp = sim.StructuralMechanism(stdp_model=stdp_model)
# Define connections
plastic_projection = sim.Projection(
    source,
    source,
    sim.FixedNumberPreConnector(32),
    synapse_dynamics=sim.SynapseDynamics(slow=structure_model_w_stdp),
    label="plastic_projection")
# Add a sprinkle of Poisson noise

# Add some spatial pattern to be repeated

# Start Simulation

# Recover provenance

# End simulation
Пример #19
0
try:
    import pyNN.spiNNaker as p
except Exception as e:
    import spynnaker8 as p

# set up the tools
p.setup(timestep=1.0, min_delay=1.0, max_delay=32.0)

# set up the virtual chip coordinates for the motor
connected_chip_coords = {'x': 0, 'y': 0}
link = 4

populations = list()
projections = list()

input_population = p.Population(6, p.SpikeSourcePoisson(rate=10))
control_population = p.Population(6, p.IF_curr_exp())
motor_device = p.Population(
    6, p.external_devices.MunichMotorDevice(spinnaker_link_id=0))

p.Projection(input_population,
             control_population,
             p.OneToOneConnector(),
             synapse_type=p.StaticSynapse(weight=5.0))

p.external_devices.activate_live_output_to(control_population, motor_device)

p.run(1000)
p.end()
    'v_reset': -70.0,
    'v_rest': -65.0,
    'v_thresh': -55.0
}

neurons = sim.Population(100, sim.IF_cond_exp(**cell_params))
inputs = sim.Population(100, sim.SpikeSourcePoisson(rate=0.0))

# set input firing rates as a linear function of cell index
input_firing_rates = np.linspace(0.0, 1000.0, num=inputs.size)
inputs.set(rate=input_firing_rates)

# create one-to-one connections
wiring = sim.OneToOneConnector()
static_synapse = sim.StaticSynapse(weight=0.1, delay=2.0)
connections = sim.Projection(inputs, neurons, wiring, static_synapse)

# configure recording
neurons.record('spikes')

# run simulation
sim_duration = 10.0  # seconds
sim.run(sim_duration * 1000.0)

# retrieve recorded data
spike_counts = neurons.get_spike_counts()
print(spike_counts)
output_firing_rates = np.array(
    [value for (key, value) in sorted(spike_counts.items())]) / sim_duration

sim.end()
Пример #21
0
# declare python code when received spikes for a timer tick
def receive_spikes(label, time, neuron_ids):
    for neuron_id in neuron_ids:
        print("Received spike at time {} from {}-{}"
              "".format(time, label, neuron_id))


p.setup(timestep=1.0)
p1 = p.Population(1, p.IF_curr_exp(), label="pop_1")
input_injector = p.Population(1, p.external_devices.SpikeInjector(),
                              label=INJECTOR_LABEL)
# set up python live spike connection
live_spikes_connection = p.external_devices.SpynnakerLiveSpikesConnection(
    receive_labels=[RECEIVER_LABEL])

# register python receiver with live spike connection
live_spikes_connection.add_receive_callback(RECEIVER_LABEL, receive_spikes)


input_proj = p.Projection(input, p1, p.OneToOneConnector(),
                          p.StaticSynapse(weight=5, delay=3))
p1.record(["spikes", "v"])

p.run(50)

neo = p1.get_data(["spikes", "v"])
spikes = neo.segments[0].spiketrains
print(spikes)
v = neo.segments[0].filter(name='v')[0]
print(v)
    post_pop = sim.Population(1, model, cell_params)

    # Stimulating populations
    pre_times = [i for i in range(pre_phase, sim_time, time_between_pairs)]
    post_times = [i for i in range(post_phase, sim_time, time_between_pairs)]
    pre_stim = sim.Population(
        1, sim.SpikeSourceArray(spike_times=[pre_times]))
    post_stim = sim.Population(
        1, sim.SpikeSourceArray(spike_times=[post_times]))

    weight = 0.035

    # Connections between spike sources and neuron populations
    ee_connector = sim.OneToOneConnector()
    sim.Projection(
        pre_stim, pre_pop, ee_connector, receptor_type='excitatory',
        synapse_type=sim.StaticSynapse(weight=weight))
    sim.Projection(
        post_stim, post_pop, ee_connector, receptor_type='excitatory',
        synapse_type=sim.StaticSynapse(weight=weight))

    # Plastic Connection between pre_pop and post_pop
    stdp_model = sim.STDPMechanism(
        timing_dependence=sim.SpikePairRule(
            tau_plus=16.7, tau_minus=33.7, A_plus=0.005, A_minus=0.005),
        weight_dependence=sim.AdditiveWeightDependence(
            w_min=0.0, w_max=0.0175), weight=start_w)

    projections.append(sim.Projection(
        pre_pop, post_pop, sim.OneToOneConnector(),
        synapse_type=stdp_model))
Пример #23
0
def run_test(w_list, cell_para, spike_source_data):
    #Du.set_trace()
    pop_list = []
    p.setup(timestep=1.0, min_delay=1.0, max_delay=3.0)
    #input poisson layer
    input_size = w_list[0].shape[0]
    #print w_list[0].shape[0]
    #print w_list[1].shape[0]

    list = []
    for j in range(input_size):
        list.append(spike_source_data[j])
    pop_in = p.Population(input_size, p.SpikeSourceArray,
                          {'spike_times': list})

    pop_list.append(pop_in)

    #for j in range(input_size):
    #pop_in[j].spike_times = spike_source_data[j]

    #pop_in = p.Population(input_size, p.SpikeSourceArray, {'spike_times' : []})
    #for j in range(input_size):
    #pop_in[j].spike_times = spike_source_data[j]
    #pop_list.append(pop_in)

    #count =0
    #print w_list[0].shape[0]
    for w in w_list:
        input_size = w.shape[0]
        #count = count+1
        #print count
        output_size = w.shape[1]
        #pos_w = np.copy(w)
        #pos_w[pos_w < 0] = 0
        #neg_w = np.copy(w)
        #neg_w[neg_w > 0] = 0
        conn_list_exci = []
        conn_list_inhi = []
        #k_size=in_size-out_size+1
        for x_ind in range(input_size):
            for y_ind in range(output_size):
                weights = w[x_ind][y_ind]
                #for i in range(w.shape[1]):
                if weights > 0:
                    conn_list_exci.append((x_ind, y_ind, weights, 1.))
                elif weights < 0:
                    conn_list_inhi.append((x_ind, y_ind, weights, 1.))
        #print output_size
        pop_out = p.Population(output_size, p.IF_curr_exp, cell_para)
        if len(conn_list_exci) > 0:
            p.Projection(pop_in,
                         pop_out,
                         p.FromListConnector(conn_list_exci),
                         target='excitatory')
        if len(conn_list_inhi) > 0:
            p.Projection(pop_in,
                         pop_out,
                         p.FromListConnector(conn_list_inhi),
                         target='inhibitory')
        #p.Projection(pop_in, pop_out, p.AllToAllConnector(weights = pos_w), target='excitatory')
        #p.Projection(pop_in, pop_out, p.AllToAllConnector(weights = neg_w), target='inhibitory')
        pop_list.append(pop_out)
        pop_in = pop_out

    pop_out.record()
    run_time = np.ceil(np.max(spike_source_data)[0] / 1000.) * 1000
    #print run_time
    p.run(run_time)
    spikes = pop_out.getSpikes(compatible_output=True)
    return spikes
def train_snn(### Settings
              data_dir        = "data/X_train_zied.npy",
              cls_dir         = "data/y_train_zied.npy",
              data            = "load",    # pass data as argument
              cls             = "load",    # pass labels as argument
              save            = True,    # True to save all parameters of the network
              randomness      = True,
              reverse_src_del = False,
              use_old_weights = False,
              rand_data       = False,
              ### Parameters
              n_training      = 2,  # How many times the samples will be iterated
              ts              = 1., # Timestep of Spinnaker (ms)
              trial_num       = 10, # How many samples (trials) from data used
              # Network
              n_feature       = 80, # Number of features (= 4 features * 20 neurons)
              # Weights
              wei_src_enc     = .2,    # From Source Array at input to Encoding Layer(Exc)
              wei_enc_filt    = .6,    # From Encoding Layer to Filtering Layer Exc neurons (Exc)
              wei_filt_inh    = 0.03,  # From Filtering Layer Inh neurons to Exc neurons (Inh)
              wei_init_stdp   = .0,    # From Filtering Layer Exc neurons to Output Layer (Exc)
              wei_cls_exc     = 0.9,   # From Output Layer Exc neurons to Inh neurons (Exc)
              wei_cls_inh     = 50,#0.1,#,10   # From Output Layer Inh neurons to Exc neurons (Inh) 
              wei_source_outp = 10.,   # From Source Array at output to Output Layer Exc neurons (Exc)
              wei_noise_poi   = 0.02,
              # Delays
              del_init_stdp   = 1.,
              del_source_outp = 1.,
              del_noise_poi   = 1.,
              # Connection Probabilities
              prob_filt_inh   = .4, # Prob of connectivity inhibitory connections at FilT_Layer
              prob_stdp       = 1., # Prob of STDP connections
              prob_output_inh = .7, # Prob of inhibitory connections at Output Layer
              prob_noise_poi_conn = 0.02,
              ## STDP Parameters
              tau_pl         = 5.,        
              stdp_w_max     = 0.4,           # default 0.4
              stdp_w_min     = 0.0,           # default 0.0
              stdp_A_pl      = 2,#0.02,# 0.01,          # default 0.01 (below 0.01 weights don't change)
                                # => minus in order to get symmetric curve
              # Data Extraction
              scale_data     = 2.): # Scale features into [0-scale_data] range
              
    
    # BUG fix:
    # n_feature is somehow a tuple
#    try:
#        trial_num = trial_num[0]
#    except Exception as e:
#        print("\n\n\n EXCEPTION TRIGGERED !!!! \n\n\n")
#        pass

    ############################################################################
    ## Function Definitions
    ############################################################################  
    def gaussian(x, mu, sig):
        return np.float16(np.exp(-np.power(x - mu, 2.) /
               (2 * np.power(sig, 2.))))

    def calc_pop_code(feature, rng1, rng2, num):
        interval=np.float(rng2-rng1)/num
        means=np.arange(rng1+interval, rng2+interval, interval)
        pop_code=[gaussian(feature,mu,0.025) for mu in means]
        return pop_code
        
    def PoissonTimes2(t_str=0., t_end=100., rate=10., seed=1.):
        times = [t_str]
        rng = np.random.RandomState(seed=seed)
        cont = True
        while cont == True:
            t_next = np.floor(times[-1] + 1000. * next_spike_times(rng,rate))
            if t_next < t_end - 30:
                times.append(t_next[0])
            else:
                cont=False
                return times[1:]

    def PoissonTimes(t_str=0., t_end=100., rate=10., seed=1., max_rate=0):
        if rate>0:    
            interval = (t_end - t_str + 0.) / rate
            # Add additional reverse_src_del
            if reverse_src_del == True:
                times = np.arange(t_str + 30, t_end - 40, interval)
                # add reverse proportional delay
                rev_del = np.ceil(max_rate / rate)
                if rev_del != np.inf:
                    times += rev_del
            else:
                times = np.arange(t_str + 30, t_end - 40, interval)
            return list(times)    
        else:
            return []

    def next_spike_times(rng,rate):
        return -np.log(1.0-rng.rand(1)) / rate   

    def ismember(a, b):
        b=[b]
        bind = {}
        for i, elt in enumerate(b):
            if elt not in bind:
                bind[elt] = i
        aa=[bind.get(itm, -1) for itm in a]
        return sum(np.array(aa)+1.)

    def get_data(trial_num, test_num=10):
        # trial_num:    number of training samples
        # test_num:     number of test samples
        pass

    def rand_sample_of_train_set(n):
        # n:      number of features
        # Return: np.array containing n samples of the training set
        X = np.load(data_dir)
        y = np.load(cls_dir)
        idx = np.random.randint(len(X), size=n)
        return X[idx], y[idx]        
        

    ############################################################################
    ## Parameters
    ############################################################################
    # Load training data
    # only load n_rand_data features of training set
    if rand_data == True:
        data, cls = rand_sample_of_train_set(trial_num)
    # load all features of training set
    else:    # load data if its not in passed as fuct argument
        if data == "load" and cls == "load":
            data = np.load(data_dir)
            cls = np.load(cls_dir)

    # Simulation Parameters
    trial_num = len(cls) # How many samples (trials) from data will be presented 
    #n_training      = 1  # How many times the samples will be iterated
    n_trials        = n_training * trial_num # Total trials
    time_int_trials = 200. # (ms) Time to present each trial data 
    SIM_TIME        = n_trials * time_int_trials # Total simulation time (ms)
    #ts              = 1. # Timestep of Spinnaker (ms)
    min_del         = ts
    max_del         = 144 * ts
    p.setup(timestep=ts, min_delay=min_del, max_delay=max_del)


    ## Neuron Numbers
    #n_feature = 80   # Number of features (= 4 features * 20 neurons)
                     #           => 20 neuros: resolution of encoding
    n_pop     = data.shape[1] #4    # Number of neurons in one population (X dim)
    n_cl      = 2    # Number of classes at the output

    ## Connection Parameters
    # Weights
 #   wei_src_enc     = .2    # From Source Array at input to Encoding Layer(Exc)
 #   wei_enc_filt    = .6    # From Encoding Layer to Filtering Layer Exc neurons (Exc)
 #   wei_filt_inh    = 0.03  # From Filtering Layer Inh neurons to Exc neurons (Inh)
 #   wei_init_stdp   = .0    # From Filtering Layer Exc neurons to Output Layer (Exc)
 #   wei_cls_exc     = 0.9   # From Output Layer Exc neurons to Inh neurons (Exc)
 #   wei_cls_inh     = 10     # 0.1   # From Output Layer Inh neurons to Exc neurons (Inh) 
 #   wei_source_outp = 10.   # From Source Array at output to Output Layer Exc neurons (Exc)
 #   wei_noise_poi   = 0.02

    # Delays
    if randomness == True:    # if True:  calculate "del_src_enc" (randomly) new
                              # if False: load previously saved "del_src_enc"
        if reverse_src_del == True:
            # calc delays erversly proportional to feature value
            del_src_enc = np.zeros(n_feature*n_pop)
        else:
            del_src_enc = [int(np.random.randint(n_pop)+1)
                           for _ in range(n_feature*n_pop)]

        np.save("output_files/del_src_enc.npy", del_src_enc)
    else:
        #del_src_enc = np.load("output_files/del_src_enc.npy")
        del_src_enc = np.ones(n_feature*n_pop).astype(int) #[1 for _ in range(n_feature*n_pop)]
    del_enc_filt    = ts
    del_filt_inh    = ts
#    del_init_stdp   = 1.
    del_cls_exc     = ts
    del_cls_inh     = ts
#    del_source_outp = 1.
#    del_noise_poi   = 1.

    # Firing Rates
    noise_poi_rate  = 10. 
    max_fr_input    = 100.   # maximum firing rate at the input layer
    max_fr_rate_output = 20. # Maximum firing rate at output (supervisory signal)

    ## Connection Probabilities
#    prob_filt_inh   = .4 # Prob of connectivity inhibitory connections at FilT_Layer
#    prob_stdp       = 1. # Prob of STDP connections
#    prob_output_inh = .7 # Prob of inhibitory connections at Output Layer
#    prob_noise_poi_conn = 0.02

    ## STDP Parameters
#    tau_pl      = 0.3           # (0.2 - 0.3 works)
    tau_min     = tau_pl        # default tau_pl
#    stdp_w_max  = 0.4           # default 0.4
#    stdp_w_min  = 0.0           # default 0.0
#    stdp_A_pl   = 0.01          # default 0.01 (below 0.01 weights don't change)
    stdp_A_min  = -stdp_A_pl    # default - stdp_A_pl 
                                # => minus in order to get symmetric curve

    ## Neuron Parameters
    cell_params_lif = {'cm': 0.25,# 0.25,
                       'i_offset': 0.0,
                       'tau_m': 20.,
                       'tau_refrac': 2.0,
                       'tau_syn_E': 5.0,
                       'tau_syn_I': 5.0,
                       'v_reset': -70.0,
                       'v_rest': -65.0,
                       'v_thresh': -50#-50
                       }


    ############################################################################
    ## Data Extraction
    ############################################################################

    ## Extract Feature Data
#    scale_data = 2. # Scale features into [0-scale_data] range

    r,c = np.shape(data)

    data_rates = np.reshape(data, (1, r*c))[0]
    # Threshold (to keep spikes in range)
    thr_data_plus = 30
    thr_data_minus = -10
    #dd = [d if d<thr_data_plus else thr_data_plus for d in data_rates]
    #dd = [d if d>thr_data_minus else thr_data_minus for d in dd]

    # Shift and normalize data
    #dd2 = np.array(dd) - min(dd)
    dd2 = np.array(data_rates) - min(data_rates)
    dd2 = dd2 / max(dd2) * 2
    new_data_rates = []
    for r in dd2:
        new_data_rates += calc_pop_code(r, 0., scale_data, n_feature /
                                        (n_pop + 0.0))
    data_rates = list(max_fr_input*np.array(new_data_rates))

    ## Extract Class Data
    # load class vector
    #cls = np.load(path_y)
    cls = np.reshape(cls, (len(cls),1))    # create col vector
    r_cl, c_cl = np.shape(cls)
    #cls = list(np.reshape(cls, (1, r_cl * c_cl))[0] - 1)
    cls = list(np.reshape(cls, (1, r_cl * c_cl))[0])


    ## The class and rate information to be used during the simulation
    outputs = n_training * cls[0:trial_num]    # positiv, ints
    poi_rate = n_training  * data_rates[0:trial_num * n_feature]

    ## Save parameters to be used in test
    parameter_dict = {"n_feature":n_feature, "n_pop":n_pop,"n_cl":n_cl,
        "wei_src_enc":wei_src_enc, "wei_enc_filt":wei_enc_filt,
        "wei_filt_inh":wei_filt_inh, "wei_cls_exc":wei_cls_exc,
        "wei_cls_inh":wei_cls_inh, "del_enc_filt":del_enc_filt,
        "del_init_stdp":del_init_stdp, "del_cls_exc":del_cls_exc,
        "del_cls_inh":del_cls_inh, "trial_num":trial_num,
        "time_int_trials":time_int_trials, "scale_data":scale_data,
        "ts":ts,"max_fr_input":max_fr_input, 
        "max_fr_rate_output":max_fr_rate_output,
        "noise_poi_rate":noise_poi_rate, "max_fr_input":max_fr_input,
        "max_fr_rate_output":max_fr_rate_output, "prob_filt_inh":prob_filt_inh,
        "prob_stdp":prob_stdp, "prob_output_inh":prob_output_inh,
        "prob_noise_poi_conn":prob_noise_poi_conn, "tau_pl":tau_pl,
        "stdp_w_max":stdp_w_max, "stdp_w_min":stdp_w_min, "stdp_A_pl":stdp_A_pl,
        "wei_noise_poi":wei_noise_poi, "del_noise_poi":del_noise_poi,
        "thr_data_plus":thr_data_plus, "thr_data_minus":thr_data_minus
        }

    if save == True:
        np.save("output_files/parameters1",parameter_dict)
        np.save("output_files/parameters2",del_src_enc)

    ############################################################################
    ## Create populations for different layers
    ############################################################################
    poi_layer = []
    enc_layer = []
    filt_layer_exc = []
    out_layer_exc = []
    out_layer_inh = []
    out_spike_source = []

    # Calculate spike times at the input using the rate information coming from features
    spike_times = [[] for i in range(n_feature)]
    for i in range(n_trials):
        t_st = i * time_int_trials
        t_end = t_st + time_int_trials
        ind = i * n_feature
        for j in range(n_feature):
            times = PoissonTimes(t_st, t_end, poi_rate[ind+j], 
                                 np.random.randint(100), max_rate=max(poi_rate))
            for t in times:
                spike_times[j].append(t)

    if randomness == True:    # if True:  calculate "spike_times" (randomly) new
                              # uf False: load previously saved "spike_times"
        np.save('output_files/spike_times_train.npy', spike_times)
    else:
        spike_times = np.load('output_files/spike_times_train.npy')



    # Calculate spike times at the output (as supervisory signal)
    out_spike_times=[[] for i in range(n_cl)]
    for i in range(n_trials):
        t_st = i * time_int_trials
        t_end = t_st + time_int_trials
        ind = outputs[i]
        times = PoissonTimes(t_st, t_end, max_fr_rate_output, 
                             np.random.randint(100))
        for t in times:
                out_spike_times[int(ind)].append(t)

    if randomness == True:    # if True:  calculate "out_spike_times" (randomly) new
                              # uf False: load previously saved "out_spike_times"
        np.save('output_files/out_spike_times.npy', out_spike_times)
    else:
        out_spike_times = np.load('output_files/out_spike_times.npy')


    # Spike source of input layer
    spike_source=p.Population(n_feature, 
                              p.SpikeSourceArray,
                              {'spike_times':spike_times},
                              label='spike_source')

    # Spike source of output layer (Supervisory signal)
    for i in range(n_cl):
        out_spike_source.append(p.Population(1, p.SpikeSourceArray,
            {'spike_times':[out_spike_times[i]]}, label='out_spike_source'))

    # Encoding layer and Filtering Layer definitions
    enc_layer = p.Population(n_feature * n_pop, 
                             p.IF_curr_exp,
                             cell_params_lif, 
                             label='enc_layer')
    filt_layer = p.Population(n_feature * n_pop, 
                              p.IF_curr_exp, 
                              cell_params_lif, 
                              label='filt_layer')

    # Excitatory and Inhibitory population definitions at the output
    for i in range(n_cl):    
        out_layer_exc.append(p.Population(n_pop, 
                                          p.IF_curr_exp, 
                                          cell_params_lif,
                                          label='out_layer_exc{}'.format(i)))
        out_layer_inh.append(p.Population(n_pop, 
                                          p.IF_curr_exp, 
                                          cell_params_lif, 
                                          label='out_layer_inh{}'.format(i)))
        out_layer_exc[i].record()

    # Noisy poisson population at the input

    poisson_input = p.Population(n_pop * 2, 
                                 p.SpikeSourcePoisson,
                                 {"rate":noise_poi_rate})


    # Record Spikes
    enc_layer.record()
    filt_layer.record()

    #enc_layer.initialize('v',p.RandomDistribution('uniform',[-51.,-69.]))
    #filt_layer.initialize('v',p.RandomDistribution('uniform',[-51.,-69.]))

    ############################################################################
    ## Projections
    ############################################################################

    ## Connection List from Spike Source Array to Encoding Layer
    conn_inp_enc=[]

    for i in range(n_feature):
        ind=i*n_pop
        for j in range(n_pop):
            conn_inp_enc.append([i,ind+j,wei_src_enc,del_src_enc[ind+j]])

    if save == True:
        np.save("output_files/conn_inp_enc",conn_inp_enc)

    ## Connection List for Filtering Layer Inhibitory
    if randomness == True:    # if True:  calculate conn_filt_inh (randomly) new
                              # uf False: load previously saved conn_filt_inh
        conn_filt_inh=[]
        for i in range(n_feature):
            rng1=i*n_pop
            rng2=rng1+n_pop
            inp=range(rng1,rng2)
            outp=range(0,rng1)+range(rng2,n_feature*n_pop)
            for ii in inp:
                for jj in outp:
                    if prob_filt_inh>np.random.rand():
                        conn_filt_inh.append([ii,jj,wei_filt_inh,del_filt_inh])
        if save == True:
            np.save('output_files/conn_filt_inh.npy', conn_filt_inh)
    else:
        conn_filt_inh = np.load('output_files/conn_filt_inh.npy')

    
    ## STDP Connection List 
    if randomness == True:    # if True:  calculate conn_stdp_list (randomly) new
                              # uf False: load previously saved conn_stdp_list
        conn_stdp_list=[[] for i in range(n_cl)]
        for i in range(n_cl): # For each population at output layer
            if use_old_weights == True:
                cl_weights = np.load(
                                "output_files/stdp_weights{}.npy".format(i))
                w = 0
            for ii in range(n_pop * n_feature): # For each neuron in filtering layer
                for jj in range(n_pop): # For each neuron in each population of output layer
                    if prob_stdp > np.random.rand(): # If the prob of connection is satiesfied
                        # Make the connection
                        if use_old_weights == True:
                            conn_stdp_list[i].append([ii,
                                                      jj, 
                                                      cl_weights[w], 
                                                      del_init_stdp])
                            w += 1 
                        else:
                            conn_stdp_list[i].append([ii,
                                                      jj, 
                                                      wei_init_stdp, 
                                                      del_init_stdp]) 
        if use_old_weights == False or save == True:
            np.save('output_files/conn_stdp_list.npy', conn_stdp_list)
    else:    
        conn_stdp_list = np.load('output_files/conn_stdp_list.npy')

    
    ## Output Layer Inhibitory Connection List
    if randomness == True:    # if True:  calculate conn_stdp_list (randomly) new
                              # uf False: load previously saved conn_stdp_list
        conn_output_inh = [[] for i in range(n_cl) for j in range(n_cl) if i!=j]
        c = 0
        for i in range(n_cl):
            for j in range(n_cl):
                if i != j:
                    for ii in range(n_pop):
                        for jj in range(n_pop):
                            if prob_output_inh > np.random.rand():
                                conn_output_inh[c].append([ii,
                                                           jj,
                                                           wei_cls_inh,
                                                           del_cls_inh])
                    c += 1
        if save == True:
            np.save("output_files/conn_output_inh.npy",conn_output_inh) 
    else:
        conn_output_inh = np.load("output_files/conn_output_inh.npy")

    

    ## Spike Source to Encoding Layer
    p.Projection(spike_source, enc_layer,
                 p.FromListConnector(conn_inp_enc))
    ## Encoding Layer to Filtering Layer
    p.Projection(enc_layer, filt_layer,
                 p.OneToOneConnector(weights=wei_enc_filt,
                                     delays=del_enc_filt))
    ## Filtering Layer Inhibitory
    p.Projection(filt_layer, filt_layer,
                 p.FromListConnector(conn_filt_inh),
                 target="inhibitory")

    ## STDP Connection between Filtering Layer and Output Layer
    timing_rule = p.SpikePairRule(tau_plus=tau_pl, 
                                  tau_minus=tau_min)
    weight_rule = p.AdditiveWeightDependence(w_max=stdp_w_max, 
                                             w_min=stdp_w_min, 
                                             A_plus=stdp_A_pl, 
                                             A_minus=stdp_A_min)
    stdp_model = p.STDPMechanism(timing_dependence=timing_rule, 
                                 weight_dependence=weight_rule)
    # STDP connection
    stdp_proj = []
    for j in range(n_cl):
        stdp_proj.append(
            p.Projection(filt_layer,out_layer_exc[j], 
                   p.FromListConnector(conn_stdp_list[j]), 
                   synapse_dynamics = p.SynapseDynamics(slow=stdp_model)))

    ## Connection between Output Layer neurons
    c = 0
    for i in range(n_cl):
        p.Projection(out_layer_exc[i], out_layer_inh[i], 
                     p.OneToOneConnector(weights=wei_cls_exc,
                                         delays=del_cls_exc))
        iter_array=[j for j in range(n_cl) if j!=i]
        for j in iter_array:
            p.Projection(out_layer_exc[i], out_layer_exc[j],
                         p.FromListConnector(conn_output_inh[c]),
                                             target="inhibitory")
            c += 1

    ## Spike Source Array to Output
    for i in range(n_cl):
        p.Projection(out_spike_source[i], 
                     out_layer_exc[i], 
                     p.AllToAllConnector(weights=wei_source_outp,
                                         delays=del_source_outp))
        iter_array = [j for j in range(n_cl) if j != i]
        for j in iter_array:
                p.Projection(out_spike_source[i],
                             out_layer_exc[j],
                             p.AllToAllConnector(weights=wei_source_outp,
                                                 delays=del_source_outp),
                                                 target="inhibitory")
    #for i in range(n_cl):
    #    p.Projection(out_spike_source[i], out_layer_exc[i], p.AllToAllConnector\
    #        (weights=wei_source_outp, delays=del_source_outp))
    #    p.Projection(out_spike_source[i], out_layer_exc[1-i], p.AllToAllConnector\
    #        (weights=wei_source_outp, delays=del_source_outp),target="inhibitory")

    ## Noisy poisson connection to encoding layer
    if randomness == True:    # if True:  connect noise to network
                              # if False: don't use noise in network
        p.Projection(poisson_input, enc_layer, 
                     p.FixedProbabilityConnector(p_connect=prob_noise_poi_conn, 
                                                 weights=wei_noise_poi, 
                                                 delays=del_noise_poi))
                
    ############################################################################
    ## Simulation
    ############################################################################
    p.run(SIM_TIME)

    Enc_Spikes = enc_layer.getSpikes()
    Filt_Exc_Spikes = filt_layer.getSpikes()

    Out_Spikes = [[] for i in range(n_cl)]
    for i in range(n_cl):
        Out_Spikes[i] = out_layer_exc[i].getSpikes()

    wei = []
    for i in range(n_cl):
        ww = stdp_proj[i].getWeights()
        if save == True:
            np.save("output_files/stdp_weights{}".format(i), ww)
        wei.append(ww)

    p.end()
    ############################################################################
    ## Plot
    ############################################################################
    ## Plot 1: Encoding Layer Raster Plot
    if 0:
        pylab.figure()
        pylab.xlabel('Time (ms)')
        pylab.ylabel('Neuron ID')
        pylab.title('Encoding Layer Raster Plot')
        pylab.hold(True)
        pylab.plot([i[1] for i in Enc_Spikes], [i[0] for i in Enc_Spikes], ".b")
        pylab.hold(False)
        #pylab.axis([-10,c*SIM_TIME+100,-1,numInp+numOut+numInp+3])
        pylab.show()

    ## Plot 2-1: Filtering Layer Raster Plot
    if 0:
        pylab.figure()
        pylab.xlabel('Time (ms)')
        pylab.ylabel('Neuron ID')
        pylab.title('Filtering Layer Raster Plot')
        pylab.plot([i[1] for i in Filt_Exc_Spikes], 
                   [i[0] for i in Filt_Exc_Spikes], ".b")
        #pylab.axis([-10,c*SIM_TIME+100,-1,numInp+numOut+numInp+3])
        pylab.show()

    ## Plot 2-2: Filtering Layer Layer Raster Plot
    if 0: 
        pylab.figure()
        pylab.xlabel('Time (ms)')
        pylab.ylabel('Neuron ID')
        pylab.title('Filtering Layer Layer Raster Plot')
        pylab.hold(True)
        pylab.plot([i[1] for i in Filt_Exc_Spikes], 
                   [i[0] for i in Filt_Exc_Spikes], ".b")
        time_ind=[i*time_int_trials for i in range(len(outputs))]
        for i in range(len(time_ind)):
            pylab.plot([time_ind[i],time_ind[i]],[0,2000],"r")
        pylab.hold(False)
        #pylab.axis([-10,c*SIM_TIME+100,-1,numInp+numOut+numInp+3])
        pylab.show()


    ## Plot 3-1: Output Layer Raster Plot
    if 0:
        pylab.figure()
        pylab.xlabel('Time (ms)')
        pylab.ylabel('Neuron')
        pylab.title('Output Layer Raster Plot')
        pylab.hold(True)
        c=0
        for array in Out_Spikes:
            pylab.plot([i[1] for i in array], [i[0]+c for i in array], ".b")
            c+=0.2
        pylab.hold(False)
        pylab.axis([-10,SIM_TIME+100,-1,n_pop+3])
        pylab.show()

    ## Plot 4: STDP WEIGHTS
    if 1:
        pylab.figure()
        pylab.xlabel('Weight ID')
        pylab.ylabel('Weight Value')
        pylab.title('STDP weights at the end')
        #pylab.title('STDP weights at the end' + ' (trail_num=' + str(trial_num) + ')')
        pylab.hold(True)
        for i in range(n_cl):
            pylab.plot(wei[i])
        pylab.hold(False)
        pylab.axis([-10,n_pop*n_feature*n_pop*0.5+10,-stdp_w_max,2*stdp_w_max])
        str_legend=["To Cl {}".format(i+1) for i in range(n_cl)]
        pylab.legend(str_legend)
        #pylab.show()
        fname = 'plots/weights_1.png'
        while True:
            if os.path.isfile(fname):    # if file already exists
                new_num =  int(fname.split('.')[0].split('_')[1]) + 1
                fname = fname.split('_')[0] + '_' +str(new_num) + '.png'
    #            if len(fname) == 19:
    #                new_num =  int(fname.split('.')[0][-1]) + 1
    #                fname = fname.split('.')[0][:-1] + str(new_num) + '.png'
    #            elif len(fname) == 20:
    #                new_num =  int(fname.split('.')[0][-2:]) + 1
    #                fname = fname.split('.')[0][:-2] + str(new_num) + '.png'
    #            else:
    #                new_num =  int(fname.split('.')[0][-3:]) + 1
    #                fname = fname.split('.')[0][:-3] + str(new_num) + '.png'
            else:
                pylab.savefig(fname)
                break
                

                


        #pylab.figure()
        #pylab.xlabel('Weight ID')
        #pylab.ylabel('Weight Value')
        #pylab.title('STDP weights at the end')
        #pylab.hold(True)
        #pylab.plot(wei[0], "b")
        #pylab.plot(wei[1], "g")
        #pylab.hold(False)
        #pylab.axis([-10, n_pop * n_feature * n_pop * 0.5 + 10, 
        #            -stdp_w_max, 2 * stdp_w_max])
        #pylab.legend(['To Cl 1','To Cl 2'])
        #pylab.show()

    ## Plot 5: Spike Source Spiking Times
    if 0:
        pylab.figure()
        pylab.hold(True)
        pylab.plot(out_spike_times[0],
                   [1 for i in range(len(out_spike_times[0]))],"x")
        pylab.plot(out_spike_times[1],
                   [1.05 for i in range(len(out_spike_times[1]))],"x")
        pylab.hold(False)
        pylab.title("Spike Source Spiking Times")
        pylab.axis([-100,SIM_TIME+100,-2,3])
        pylab.show()

        

    ## Calculate spiking activity of each neuron to each class inputs
    sum_filt=[[0 for i in range(n_feature*n_pop)] for j in range(n_cl)]
    sum_filt=np.array(sum_filt)

    for i in range(n_trials):
        t_st = i * time_int_trials
        t_end = t_st + time_int_trials
        cl = outputs[i]
        for n,t in Filt_Exc_Spikes:
            if t >= t_st and t < t_end:
                sum_filt[int(cl),int(n)] = sum_filt[int(cl), int(n)] + 1


    a4=sum_filt[0]
    b4=sum_filt[1]

    thr=20

    diff_vec=np.abs(a4 - b4)
    diff_thr=[i if i>thr else 0. for i in diff_vec]
    diff_ind=[i for i in range(len(diff_thr)) if diff_thr[i]!=0]
    if save == True:
        np.save("output_files/diff_ind_filt",diff_ind)

    diff2 = a4 - b4
    diff_thr2=[i if i > thr or i <- thr else 0. for i in diff2]
    diff_ind2=[i for i in range(len(diff_thr2)) if diff_thr2[i] != 0]
    if save == True:
        np.save("output_files/diff_ind_filt2",diff_ind2)
        np.save("output_files/diff_thr2",diff_thr2)

    ## Plot 6: Total Spiking Activity of Neurons at Decomposition Layer for Each Class
    if 0:
        a4=sum_filt[0]
        b4=sum_filt[1]
        pylab.figure()
        pylab.hold(True)
        pylab.plot(a4,"b")
        pylab.plot(b4,"r")
        pylab.xlabel('Neuron ID')
        pylab.ylabel('Total Firing Rates Through Trials')
        pylab.title("Total Spiking Activity of Neurons at Decomposition Layer ", 
                    "for Each Class")
        pylab.hold(False)
        pylab.legend(["Activity to AN1","Activity to AN2"])
        pylab.show()
Пример #25
0
import pyNN.spiNNaker as sim

sim.setup()

p1 = sim.Population(3, sim.SpikeSourceArray, {"spike_times":  [1.0, 2.0, 3.0]})
p2 = sim.Population(3, sim.SpikeSourceArray, {"spike_times":  [[10.0], [20.0], [30.0]]})
p3 = sim.Population(4, sim.IF_cond_exp, {})

sim.Projection(p2, p3, sim.FromListConnector([
    (0, 0, 0.1, 1.0), (1, 1, 0.1, 1.0), (2, 2, 0.1, 1.0)]))
#sim.Projection(p1, p3, sim.FromListConnector([(0, 3, 0.1, 1.0)])) # works if this line is added

sim.run(100.0)
Пример #26
0
def train(spikeTimes,untrained_weights=None):
    organisedStim = {}
    labelSpikes = []
    #spikeTimes = generate_data()


        #for j in range(5):
        #    labelSpikes
        
    #labelSpikes[label] = [(input_len-1)*v_co+1,(input_len-1)*v_co*2+1,(input_len-1)*v_co*3+1,]
    
    
    if untrained_weights == None:
        untrained_weights = RandomDistribution('uniform', low=wMin, high=wMaxInit).next(input_size*output_size)
        #untrained_weights = RandomDistribution('normal_clipped', mu=0.1, sigma=0.05, low=wMin, high=wMaxInit).next(input_size*output_size)
        untrained_weights = np.around(untrained_weights, 3)
        #saveWeights(untrained_weights, 'untrained_weightssupmodel1traj')
        print ("init!")

    print "length untrained_weights :", len(untrained_weights)

    if len(untrained_weights)>input_size:
        training_weights = [[0 for j in range(output_size)] for i in range(input_size)] #np array? size 1024x25
        k=0
        for i in range(input_size):
            for j in range(output_size):
                training_weights[i][j] = untrained_weights[k]
                k += 1
    else:
        training_weights = untrained_weights

    connections = []
    for n_pre in range(input_size): # len(untrained_weights) = input_size
        for n_post in range(output_size): # len(untrained_weight[0]) = output_size; 0 or any n_pre
            connections.append((n_pre, n_post, training_weights[n_pre][n_post], __delay__)) #index
    runTime = int(max(max(spikeTimes))/3)+100
    #####################
    sim.setup(timestep=1)
    #def populations
    layer1=sim.Population(input_size,sim.SpikeSourceArray, {'spike_times': spikeTimes},label='inputspikes')
    layer2=sim.Population(output_size,sim.IF_curr_exp,cellparams=cell_params_lif,label='outputspikes')
    #supsignal=sim.Population(output_size,sim.SpikeSourceArray, {'spike_times': labelSpikes},label='supersignal')

    #def learning rule
    stdp = sim.STDPMechanism(
                            weight=untrained_weights,
                            #weight=0.02,  # this is the initial value of the weight
                            #delay="0.2 + 0.01*d",
                            timing_dependence=sim.SpikePairRule(tau_plus=tauPlus, tau_minus=tauMinus,A_plus=aPlus, A_minus=aMinus),
                            #weight_dependence=sim.MultiplicativeWeightDependence(w_min=wMin, w_max=wMax),
                            weight_dependence=sim.AdditiveWeightDependence(w_min=wMin, w_max=wMax),
                            #weight_dependence=sim.AdditiveWeightDependence(w_min=0, w_max=0.4),
                            dendritic_delay_fraction=1.0)
    #def projections

    #stdp_proj = sim.Projection(layer1, layer2, sim.FromListConnector(connections), synapse_type=stdp)
    stdp_proj = sim.Projection(layer1, layer2, sim.AllToAllConnector(), synapse_type=stdp)
    inhibitory_connections = sim.Projection(layer2, layer2, sim.AllToAllConnector(allow_self_connections=False), 
                                            synapse_type=sim.StaticSynapse(weight=inhibWeight, delay=__delay__), 
                                            receptor_type='inhibitory')
    #stim_proj = sim.Projection(supsignal, layer2, sim.OneToOneConnector(), 
    #                            synapse_type=sim.StaticSynapse(weight=stimWeight, delay=__delay__))
    
    layer1.record(['spikes'])

    layer2.record(['v','spikes'])
    #supsignal.record(['spikes'])
    sim.run(runTime)

    print("Weights:{}".format(stdp_proj.get('weight', 'list')))

    weight_list = [stdp_proj.get('weight', 'list'), stdp_proj.get('weight', format='list', with_address=False)]
    neo = layer2.get_data(["spikes", "v"])
    spikes = neo.segments[0].spiketrains
    v = neo.segments[0].filter(name='v')[0]
    #neostim = supsignal.get_data(["spikes"])
    #spikestim = neostim.segments[0].spiketrains
    neoinput= layer1.get_data(["spikes"])
    spikesinput = neoinput.segments[0].spiketrains

    plt.close('all')
    pplt.Figure(
    pplt.Panel(spikesinput,xticks=True, yticks=True, markersize=2, xlim=(0,runTime),xlabel='(a) Spikes of Input Layer'),
    #pplt.Panel(spikestim, xticks=True, yticks=True, markersize=2, xlim=(0,runTime),xlabel='(c) Spikes of Supervised Layer'),
    pplt.Panel(spikes, xticks=True, xlabel="(b) Spikes of Output Layer", yticks=True, markersize=2, xlim=(0,runTime)),
    pplt.Panel(v, ylabel="Membrane potential (mV)", xticks=True, yticks=True, xlim=(0,runTime),xlabel='(c) Membrane Potential of Output Layer\nTime (ms)'),
    title="Two Training",
    annotations="Twoway Training"
                ).save('SNN_DVS_un/plot_for_twoway/'+str(trylabel)+'_training.png')
    #plt.hist(weight_list[1], bins=100)
    
    plt.close('all')
    plt.hist([weight_list[1][0:input_size], weight_list[1][input_size:input_size*2], weight_list[1][input_size*2:]], bins=20, label=['neuron 0', 'neuron 1', 'neuron 2'], range=(0, wMax))
    plt.title('weight distribution')
    plt.xlabel('Weight value')
    plt.ylabel('Weight count')
    #plt.show()
    #plt.show()
                
    sim.end()
    return weight_list[1]
Пример #27
0
def estimate_kb(cell_params_lif):
    cell_para = copy.deepcopy(cell_params_lif)
    random.seed(0)
    p.setup(timestep=1.0, min_delay=1.0, max_delay=16.0)
    run_s = 10.
    runtime = 1000. * run_s
    max_rate = 1000.
    ee_connector = p.OneToOneConnector(weights=1.0, delays=2.0)

    pop_list = []
    pop_output = []
    pop_source = []
    x = np.arange(0., 1.01, 0.1)
    count = 0
    trail = 10

    for i in x:
        for j in range(trail):  #trails for average
            pop_output.append(p.Population(1, p.IF_curr_exp, cell_para))
            poisson_spikes = mu.poisson_generator(i * max_rate, 0, runtime)
            pop_source.append(
                p.Population(1, p.SpikeSourceArray,
                             {'spike_times': poisson_spikes}))
            p.Projection(pop_source[count],
                         pop_output[count],
                         ee_connector,
                         target='excitatory')
            pop_output[count].record()
            count += 1

    count = 0
    for i in x:
        cell_para['i_offset'] = i
        pop_list.append(p.Population(1, p.IF_curr_exp, cell_para))
        pop_list[count].record()
        count += 1
    pop_list[count - 1].record_v()

    p.run(runtime)

    rate_I = np.zeros(count)
    rate_P = np.zeros(count)
    rate_P_max = np.zeros(count)
    rate_P_min = np.ones(count) * 1000.
    for i in range(count):
        spikes = pop_list[i].getSpikes(compatible_output=True)
        rate_I[i] = len(spikes) / run_s
        for j in range(trail):
            spikes = pop_output[i * trail +
                                j].getSpikes(compatible_output=True)
            spike_num = len(spikes) / run_s
            rate_P[i] += spike_num
            if spike_num > rate_P_max[i]:
                rate_P_max[i] = spike_num
            if spike_num < rate_P_min[i]:
                rate_P_min[i] = spike_num
        rate_P[i] /= trail
    '''
    #plot_spikes(spikes, 'Current = 10. mA')
    plt.plot(x, rate_I, label='current',)
    plt.plot(x, rate_P, label='Poisson input')
    plt.fill_between(x, rate_P_min, rate_P_max, facecolor = 'green', alpha=0.3)
    '''
    x0 = np.where(rate_P > 1.)[0][0]
    x1 = 4
    k = (rate_P[x1] - rate_P[x0]) / (x[x1] - x[x0])
    '''
    plt.plot(x, k*(x-x[x0])+rate_P[x0], label='linear')
    plt.legend(loc='upper left', shadow=True)
    plt.grid('on')
    plt.show()
    '''
    p.end()
    return k, x[x0], rate_P[x0]
Пример #28
0
		'tau_m': 20,
		'tau_refrac': 2,
		'tau_syn_E': 50,
		'tau_syn_I': 5,
		'v_reset': -70,
		'v_rest': -65,
		'v_thresh': -55
}

sim.set_number_of_neurons_per_core(sim.IF_curr_exp, 100)

G1_1= sim.Population(1,sim.IF_curr_exp(**cell_params_lif), label="G1_1")
G2_2= sim.Population(10,sim.IF_curr_exp(**cell_params_lif), label="G2_2")
GEN1_3= sim.Population(1,simSpikeSourceArray(spike_times=[0,8], label="GEN1_3")

input_G1_1GEN1_3=sim.Projection(G1_1,GEN1_3, sim.OneToOneConnector(), synapse_type.StaticSynapse(weight=1.25, delay=0))
input_G1_1G2_2=sim.Projection(G1_1,G2_2, sim.OneToOneConnector(), synapse_type.StaticSynapse(weight=0.8, delay=0))
input_G2_2G1_1=sim.Projection(G2_2,G1_1, sim.OneToOneConnector(), synapse_type.StaticSynapse(weight=0.1, delay=0))

G1_1.record(["spikes","v","gsyn_exc"])

simtime =50
sim.run(simtime)

neo = G1_1.get_data(variables=["spikes","v","gsync_exc"])
spikes = neo.segments[0].spiketrains
print spikes
v = neo.segments[0].filter(name='v')[0]
print v
gsync = neo.segments[0].filter(name='gsync_exc')[0]
print gsync
Пример #29
0
                            label="expoisson")

# +-------------------------------------------------------------------+
# | Creation of connections                                           |
# +-------------------------------------------------------------------+

# Connection parameters
JEE = 3.

# Connection type between noise poisson generator and excitatory populations
ee_connector = sim.OneToOneConnector()

# Noise projections
sim.Projection(INoisePre,
               pre_pop,
               ee_connector,
               receptor_type='excitatory',
               synapse_type=sim.StaticSynapse(weight=JEE * 0.05))
sim.Projection(INoisePost,
               post_pop,
               ee_connector,
               receptor_type='excitatory',
               synapse_type=sim.StaticSynapse(weight=JEE * 0.05))

# Additional Inputs projections
for i in range(len(IAddPre)):
    sim.Projection(IAddPre[i],
                   pre_pop,
                   ee_connector,
                   receptor_type='excitatory',
                   synapse_type=sim.StaticSynapse(weight=JEE * 0.05))
def test_snn(randomness      = False,
             data_dir        = "data/X_test_zied.npy",
             cls_dir         = "data/y_test_zied.npy",
             data            = "load",  # pass data as argument
             cls             = "load"): # pass labels as argument
    ###############################################################################
    ## Function Definitions
    ###############################################################################  
    def gaussian(x, mu, sig):
        return np.float16(np.exp(-np.power(x - mu, 2.) / (2 * np.power(sig, 2.))))

    def calc_pop_code(feature, rng1, rng2, num):
        interval = np.float(rng2 - rng1) / num
        means = np.arange(rng1 + interval,rng2 + interval, interval)
        pop_code = [gaussian(feature, mu, 0.025) for mu in means]
        return pop_code
        
    def PoissonTimes2(t_str=0., t_end=100., rate=10., seed=1.):
        times = [t_str]
        rng = np.random.RandomState(seed=seed)
        cont = True
        while cont == True:
            t_next = np.floor(times[-1] + 1000. * next_spike_times(rng, rate))
            if t_next < t_end - 30:
                times.append(t_next[0])
            else:
                cont = False
                return times[1:]

    def PoissonTimes(t_str=0., t_end=100., rate=10., seed=1.):
        if rate > 0:    
            interval = (t_end - t_str+0.) / rate
            times = np.arange(t_str + 30, t_end - 40, interval)
            return list(times)    
        else:
            return []

    def next_spike_times(rng,rate):
        return -np.log(1.0 - rng.rand(1)) / rate   

    def ismember(a, b):
        b = [b]
        bind = {}
        for i, elt in enumerate(b):
            if elt not in bind:
                bind[elt] = i
        aa=[bind.get(itm, -1) for itm in a]
        return sum(np.array(aa) + 1.)


    ###############################################################################
    ## Parameters
    ###############################################################################
    # Load Parameter
    parameters = np.load("output_files/parameters1.npy")
    parameters = parameters.item()
    # Load test data
    if data == "load" and cls == "load":
        data = np.load(data_dir)
        cls = np.load(cls_dir)
    # Simulation Parameters

    trial_num       = parameters["trial_num"] # How many samples (trials) from data will be presented 
    n_trials        = len(cls)#10#20 #int(trial_num) # Total trials
    time_int_trials = parameters["time_int_trials"] # (ms) Time to present each trial data 
    SIM_TIME        = n_trials * time_int_trials # Total simulation time (ms)
    ts              = parameters["ts"] # Timestep of Spinnaker (ms)
    min_del         = ts
    max_del         = 144 * ts
    p.setup(timestep=ts, min_delay=min_del, max_delay=max_del)


    ## Neuron Numbers

    n_feature = parameters["n_feature"] # Number of features
    n_pop     = parameters["n_pop"] # Number of neurons in one population
    n_cl      = parameters["n_cl"] # Number of classes at the output

    ## Connection Parameters
    # Weights
    wei_src_enc   = parameters["wei_src_enc"] # From Source Array at input to Encoding Layer(Exc)
    wei_enc_filt  = parameters["wei_enc_filt"] # From Encoding Layer to Filtering Layer Exc neurons (Exc)
    wei_filt_inh  = parameters["wei_filt_inh"]  # From Filtering Layer Inh neurons to Exc neurons (Inh)
    wei_cls_exc   = parameters["wei_cls_exc"] # From Output Layer Exc neurons to Inh neurons (Exc)
    wei_cls_inh   = parameters["wei_cls_inh"] # From Output Layer Inh neurons to Exc neurons (Inh) 
    wei_noise_poi = parameters["wei_noise_poi"]

    # Delays
    del_src_enc   = np.load("output_files/parameters2.npy")
    del_enc_filt  = parameters["del_enc_filt"]
    del_init_stdp = parameters["del_init_stdp"]
    del_cls_exc   = parameters["del_cls_exc"]
    del_cls_inh   = parameters["del_cls_inh"]
    del_noise_poi = parameters["del_noise_poi"]

    # Firing Rates
    noise_poi_rate     = parameters["noise_poi_rate"] 
    max_fr_input       = parameters["max_fr_input"] # maximum firing rate at the input layer
    max_fr_rate_output = parameters["max_fr_rate_output"] # Maximum firing rate at output (supervisory signal)

    ## Connection Probabilities
    prob_filt_inh       = parameters["prob_filt_inh"] # Prob of connectivity inhi-connections at Filtering Layer
    prob_stdp           = parameters["prob_stdp"] # Probability of STDP connections
    prob_output_inh     = parameters["prob_output_inh"] # Prob of inhi-connections at Output Layer
    prob_noise_poi_conn = parameters["prob_noise_poi_conn"]

    ## STDP Parameters
    tau_pl     = parameters["tau_pl"] #5
    tau_min    = tau_pl
    stdp_w_max = parameters["stdp_w_max"]
    stdp_w_min = parameters["stdp_w_min"]
    stdp_A_pl  = parameters["stdp_A_pl"]
    stdp_A_min = -stdp_A_pl # minus in order to get symmetric curve

    ## Neuron Parameters
    cell_params_lif = {'cm': 1.,
                       'i_offset': 0.0,
                       'tau_m': 20.,
                       'tau_refrac': 2.0,
                       'tau_syn_E': 5.0,
                       'tau_syn_I': 5.0,
                       'v_reset': -70.0,
                       'v_rest': -65.0,
                       'v_thresh': -65.0
                       }



    ###############################################################################
    ## Data Extraction
    ###############################################################################

    ## Extract Feature Data
    scale_data = parameters["scale_data"] # Scale features into [0-scale_data] range

    #data = np.load("features_without_artifact.npy")
    #data = np.load('X_test.npy')
    r, c = np.shape(data)

    # Threshold (to keep spikes amplitudes in range)
    thr_data_plus = parameters["thr_data_plus"]
    thr_data_minus = parameters["thr_data_minus"]
    data_rates = np.reshape(data, (1, r * c))[0]

    # Shift an normalize the data
    #dd = [d if d<thr_data_plus else thr_data_plus for d in data_rates]
    #dd = [d if d>thr_data_minus else thr_data_minus for d in dd]
    #dd2 = np.array(dd) - min(dd)
    #dd2 = dd2 / max(dd2) * 2
    dd2 = np.array(data_rates) - min(data_rates)
    dd2 = dd2 / max(dd2) * 2
    new_data_rates = []
    for r in dd2:
        new_data_rates += calc_pop_code(r, 0., scale_data, 
                                        n_feature / (n_pop + 0.0))
    data_rates = list(max_fr_input * np.array(new_data_rates))

    ## Extract Class Data
    #cls = np.load("classes_without_artifact.npy")
    #cls = np.load("y_test.npy")
    cls = cls.reshape(len(cls), 1)
    r_cl, c_cl = np.shape(cls)
    cls = list(np.reshape(cls, (1, r_cl * c_cl))[0])

    outputs = cls[:n_trials]
    poi_rate = data_rates[:n_feature * n_trials]
    t1 = 0#70
    t2 = int(t1 + n_trials)
    outputs = cls[t1:t2]
    poi_rate = data_rates[t1 * n_feature:n_feature * t2]



    ###############################################################################
    ## Create populations for different layers
    ###############################################################################
    poi_layer = []
    enc_layer = []
    filt_layer_exc = []
    out_layer_exc = []
    out_layer_inh = []

    # Calculate poisson spike times for features
    spike_times = [[] for i in range(n_feature)]
    for i in range(n_trials):
        t_st = i * time_int_trials
        t_end = t_st + time_int_trials
        ind = i * n_feature
        for j in range(n_feature):
            times = PoissonTimes(t_st, t_end, poi_rate[ind+j], 
                                 np.random.randint(100))
            for t in times:
                spike_times[j].append(t)

    if randomness == True:    # if True:  calculate "spike_times" (randomly) new
                              # if False: load previously saved "spike_times"
        np.save('output_files/spike_times_test.npy', spike_times)
    else:
        spike_times = np.load('output_files/spike_times_test.npy')



    # Spike source of input layer
    spike_source = p.Population(n_feature, 
                                p.SpikeSourceArray,
                                {'spike_times':spike_times},
                                label='spike_source')


    enc_layer = p.Population(n_feature * n_pop,
                             p.IF_curr_exp,
                             cell_params_lif,
                             label='enc_layer')
    
    filt_layer = p.Population(n_feature * n_pop,
                              p.IF_curr_exp, 
                              cell_params_lif, 
                              label='filt_layer')
    #filt_layer_inh=p.Population(n_feature*n_pop, p.IF_curr_exp, cell_params_lif, label='filt_layer_inh')


    for i in range(n_cl):    
        out_layer_exc.append(p.Population(n_pop, 
                                          p.IF_curr_exp, 
                                          cell_params_lif, 
                                          label='out_layer_exc{}'.format(i)))
        out_layer_inh.append(p.Population(n_pop, 
                                          p.IF_curr_exp, 
                                          cell_params_lif, 
                                          label='out_layer_inh{}'.format(i)))
        out_layer_exc[i].record()

    poisson_input = p.Population(n_pop * 2,
                                 p.SpikeSourcePoisson,
                                 {"rate":noise_poi_rate})

    enc_layer.record()
    filt_layer.record()


    ###############################################################################
    ## Projections
    ###############################################################################


    ## Connection List from Spike Source Array to Encoding Layer
    conn_inp_enc = np.load("output_files/conn_inp_enc.npy")

    #Connection List for Filtering Layer Inhibitory
    conn_filt_inh = np.load("output_files/conn_filt_inh.npy")

    ## STDP Connection List
    conn_stdp_list = np.load("output_files/conn_stdp_list.npy")
    diff_ind = np.load("output_files/diff_ind_filt.npy")
    diff_ind2 = np.load("output_files/diff_ind_filt2.npy")
    diff_thr2 = np.load("output_files/diff_thr2.npy")
    c1 = 0
    for cls_list in conn_stdp_list:
        c2 = 0
        cls_wei = np.load("output_files/stdp_weights{}.npy".format(c1))
        mx = max(cls_wei)
        for conn in cls_list:
    #        if ismember(diff_ind,conn[0]):
            if (ismember(diff_ind2,conn[0]) and 
                    np.sign(c1-0.5) * np.sign(diff_thr2[int(conn[0])]) == -1.):
    #            conn[2]=0.08*cls_wei[c2]/mx
               conn[2] = 0.08#*diff_thr2[conn[0]]/36.
    #        conn[2]=2.*cls_wei[c2]
            c2 += 1
        c1 += 1
    conn_stdp_list = list(conn_stdp_list)


    ## Output Layer Inhibitory Connection List

    conn_output_inh = np.load("output_files/conn_output_inh.npy")


    ## Spike Source to Encoding Layer
    p.Projection(spike_source,enc_layer,p.FromListConnector(conn_inp_enc))
    ## Encoding Layer to Filtering Layer
    p.Projection(enc_layer, filt_layer,
                 p.OneToOneConnector(weights=wei_enc_filt, 
                                     delays=del_enc_filt))
    ## Filtering Layer Inhibitory
    p.Projection(filt_layer,filt_layer,
                 p.FromListConnector(conn_filt_inh),
                target="inhibitory")

    ## STDP Connection between Filtering Layer and Output Layer
    stdp_proj = []
    for j in range(n_cl):
        stdp_proj.append(p.Projection(filt_layer, out_layer_exc[j], 
                                      p.FromListConnector(conn_stdp_list[j])))

    ## Connection between Output Layer neurons
    c = 0
    for i in range(n_cl):
        p.Projection(out_layer_exc[i], out_layer_inh[i],
                     p.OneToOneConnector(weights=wei_cls_exc, 
                                         delays=del_cls_exc))
        iter_array = [j for j in range(n_cl) if j != i]
        for j in iter_array:
            p.Projection(out_layer_inh[i], out_layer_exc[j],
                         p.FromListConnector(conn_output_inh[c]),
                                             target="inhibitory")
            c+=1

    ## Noisy poisson connection to encoding layer
    if randomness == True:    # if True:  connect noise to network
                              # if False: don't use noise in network
        p.Projection(poisson_input,
                     enc_layer, 
                     p.FixedProbabilityConnector(p_connect=prob_noise_poi_conn,
                                                 weights=wei_noise_poi, 
                                                 delays = del_noise_poi))
    

    ###############################################################################
    ## Simulation
    ###############################################################################
    p.run(SIM_TIME)

    Enc_Spikes = enc_layer.getSpikes()
    Filt_Exc_Spikes = filt_layer.getSpikes()
    #Filt_Inh_Spikes = filt_layer_inh.getSpikes()

    Out_Spikes = [[] for i in range(n_cl)]
    for i in range(n_cl):
        Out_Spikes[i] = out_layer_exc[i].getSpikes()

    p.end()

    ###############################################################################
    ## Plot
    ###############################################################################
    ## Plot 1
    if 0:
        pylab.figure()
        pylab.xlabel('Time (ms)')
        pylab.ylabel('Neuron ID')
        pylab.title('Encoding Layer Raster Plot')
        pylab.hold(True)
        pylab.plot([i[1] for i in Enc_Spikes], [i[0] for i in Enc_Spikes], ".b")
        pylab.hold(False)
        #pylab.axis([-10,c*SIM_TIME+100,-1,numInp+numOut+numInp+3])
        pylab.show()

    ## Plot 2-1
    if 0:
        pylab.figure()
        pylab.xlabel('Time (ms)')
        pylab.ylabel('Neuron ID')
        pylab.title('Filtering Layer Raster Plot')
        pylab.plot([i[1] for i in Filt_Exc_Spikes], [i[0] for i in Filt_Exc_Spikes], ".b")
        #pylab.axis([-10,c*SIM_TIME+100,-1,numInp+numOut+numInp+3])
        pylab.show()

    ## Plot 2-2
        pylab.figure()
        pylab.xlabel('Time (ms)')
        pylab.ylabel('Neuron ID')
        pylab.title('Filtering Layer Raster Plot')
        pylab.hold(True)
        pylab.plot([i[1] for i in Filt_Exc_Spikes], [i[0] for i in Filt_Exc_Spikes], ".b")
        time_ind=[i*time_int_trials for i in range(len(outputs))]
        for i in range(len(time_ind)):
            pylab.plot([time_ind[i],time_ind[i]],[0,2000],"r")
        pylab.hold(False)
        #pylab.axis([-10,c*SIM_TIME+100,-1,numInp+numOut+numInp+3])
        pylab.show()

    ## Plot 3-1
    if 0:
        pylab.figure()
        pylab.xlabel('Time (ms)')
        pylab.ylabel('Neuron ID')
        pylab.title('Association Layer Raster Plot\nTest for Trial Numbers {}-{}'.format(t1,t2))
        pylab.hold(True)
        c=0
        for array in Out_Spikes:
            pylab.plot([i[1] for i in array], [i[0]+c for i in array], ".b")
            c+=0.2
        time_cls=[j*time_int_trials+i for j in range(len(outputs)) for i in range(int(time_int_trials))]
        cls_lb=[outputs[j]+0.4 for j in range(len(outputs)) for i in range(int(time_int_trials))]
        time_ind=[i*time_int_trials for i in range(len(outputs))]
        for i in range(len(time_ind)):
            pylab.plot([time_ind[i],time_ind[i]],[0,10],"r")
        #pylab.plot(time_cls,cls_lb,".")
        pylab.hold(False)
        pylab.axis([-10,SIM_TIME+100,-1,n_pop+2])
        pylab.show()


    ## Plot 3-2
        pylab.figure()
        pylab.xlabel('Time (ms)')
        pylab.ylabel('Neuron ID')
        pylab.title(('Association Layer Raster Plot\n',
                     'Test for Samples {}-{}').format(t1,t2))
        pylab.hold(True)

        pylab.plot([i[1] for i in Out_Spikes[0]], 
                   [i[0] for i in Out_Spikes[0]], 
                   ".b")
        pylab.plot([i[1] for i in Out_Spikes[1]], 
                   [i[0] + 0.2 for i in Out_Spikes[1]], 
                   ".r")

        time_ind = [i * time_int_trials for i in range(len(outputs))]
        for i in range(len(time_ind)):
            pylab.plot([time_ind[i], time_ind[i]], [0,n_pop], "k")
        #pylab.plot(time_cls,cls_lb,".")
        pylab.hold(False)
        pylab.axis([-10, SIM_TIME+100, -1, n_pop + 2])
        pylab.legend(["AN1","AN2" ])
        pylab.show()



    sum_output = [[] for i in range(n_cl)]

    for i in range(n_trials):
        t_st = i * time_int_trials
        t_end = t_st + time_int_trials
        for j in range(n_cl):
            sum_output[j].append(np.sum(
                [1 for n, t in Out_Spikes[j] if t >= t_st and t < t_end])
            )

    ## Plot 4
    if 0:
    #    pylab.figure()
    #    pylab.hold(True)
    #    pylab.plot(sum_output[0], "b.")
    #    pylab.plot(sum_output[1], "r.")
    #    out_cl0 = [i for i in range(len(outputs)) if outputs[i] == 0]
    #    out_cl1 = [i for i in range(len(outputs)) if outputs[i] == 1]
    #    pylab.plot(out_cl0,[-2 for i in range(len(out_cl0))], "xb")
    #    pylab.plot(out_cl1,[-2 for i in range(len(out_cl1))], "xr")
    #    pylab.hold(False)
    #    pylab.title("Total spikes at each AN population for each trial")
    #    pylab.xlabel("Trials")
    #    pylab.ylabel("Firing Rate")
    #    pylab.legend(["Cl0","Cl1","Winning Cl 0", "Winning Cl 1"])
    #    pylab.axis([-2, n_trials + 2, -4, max(max(sum_output)) + 30])
    #    pylab.show()
        pylab.figure()
        pylab.hold(True)
        pylab.plot(sum_output[0], "b^")
        pylab.plot(sum_output[1], "r^")
        #pylab.plot(sum_output[0],"b")
        #pylab.plot(sum_output[1],"r")
        ppp0 = np.array(sum_output[0])
        ppp1 = np.array(sum_output[1])
        out_cl0 = [i for i in range(len(outputs)) if outputs[i] == 0]
        out_cl1 = [i for i in range(len(outputs)) if outputs[i] == 1]
        pylab.plot(out_cl0, ppp0[out_cl0], "bs")
        pylab.plot(out_cl1, ppp1[out_cl1], "rs")
        pylab.hold(False)
        pylab.title("Total spikes at each AN population for each trial")
        pylab.xlabel("Trials")
        pylab.ylabel("Spike Count for Each Trial")
        pylab.legend(["Cls 0", "Cls 1", "Actual Winner Cls 0", 
                      "Actual Winner Cls 1"])
        pylab.axis([-2, n_trials + 2, -4, max(max(sum_output)) + 30])
        pylab.show()


    ## Check Classification rate
    s = np.array(sum_output)
    cl = np.floor((np.sign(s[1] - s[0]) + 1) / 2)
    r_cl = np.array(outputs)
    wrong = np.sum(np.abs(cl - r_cl))
    rate = (n_trials - wrong) / n_trials
    print("success rate: {}%".format(abs(rate)*100.))

    print("cl:\n", cl)
    print("r_cl:\n", r_cl)

    ## Plot 5
    if 0:
        pylab.figure()
        cf = 0.1
        pylab.hold(True)
        cls_wei0 = np.load("output_files/stdp_weights{}.npy".format(0))
        mx = max(cls_wei0)
        cls_wei0 = cf * cls_wei0 / mx
        cls_wei1 = np.load("output_files/stdp_weights{}.npy".format(1))
        mx = max(cls_wei1)
        cls_wei1 = cf * cls_wei1/ mx
        l = min(len(cls_wei0), len(cls_wei1))
        new_array0 = [cls_wei0[i] for i in range(l) if cls_wei0[i] > cls_wei1[i]]
        x0 = [i for i in range(l) if cls_wei0[i] > cls_wei1[i]]
        new_array1 = [cls_wei1[i] for i in range(l) if cls_wei1[i] > cls_wei0[i]]
        x1 = [i for i in range(l) if cls_wei1[i] > cls_wei0[i]]

        pylab.plot(x0, new_array0, "gx")
        pylab.plot(x1, new_array1, "bx")
        #for i in range(2):
        #    cls_wei=np.load("stdp_weights{}.npy".format(i))
        #    mx=max(cls_wei)
        #    cls_wei=0.05*cls_wei/mx
        #    pylab.plot(cls_wei,"x")
        pylab.axis([-10, 2000, -0.1, 0.15])
        pylab.hold(False)
        pylab.show()
     
    ## Plot 7
    if 0:
        sum_filt = [[0 for i in range(n_feature * n_pop)] for j in range(n_cl)]
        sum_filt = np.array(sum_filt)

        for i in range(n_trials):
            t_st = i * time_int_trials
            t_end = t_st + time_int_trials
            cl = outputs[i]
            for n, t in Filt_Exc_Spikes:
                if t >= t_st and t < t_end:
                    sum_filt[int(cl),int(n)] = sum_filt[(cl),int(n)] + 1

        a4=sum_filt[0]
        b4=sum_filt[1]
        pylab.figure()
        pylab.hold(True)
        pylab.plot(a4,"b.")
        pylab.plot(b4,"r.")
        pylab.xlabel('Neuron ID')
        pylab.ylabel('Total Firing Rates Through Trials')
        pylab.title("Total Spiking Activity of Neurons at Decomposition Layer for Each Class")
        pylab.hold(False)
        pylab.legend(["Activity to AN1","Activity to AN2"])
        pylab.show()   

    return rate