Пример #1
0
def mapping_process():

    ###################################
    SIM_TIME = TIME_SLOT*DATA_AMOUNT ##
    ###################################
    
    twitter_text_vectors = sentence_to_vec()
    orig = get_nearest_neighbor(twitter_text_vectors)
    show_result(orig,1,'./retrived_data/original_classification')
    response_space       = generate_vr_response(twitter_text_vectors)
    spiking_space        = generate_spiking_time(response_space) 
    np.savetxt("./retrived_data/input_time.txt",spiking_space,fmt='%s',delimiter=',',newline='\n')

    spynnaker.setup(timestep=1)
    spynnaker.set_number_of_neurons_per_core(spynnaker.IF_curr_exp, 250)

    pn_population  = setupLayer_PN(spiking_space)
    kc_population  = setupLayer_KC()
    kc_population.record(["spikes"])

    pn_kc_projection  = setupProjection_PN_KC(pn_population,kc_population)
    spynnaker.run(SIM_TIME)

    neo = kc_population.get_data(variables=["spikes"])
    spikeData_original= neo.segments[0].spiketrains
    spynnaker.end()
    return spikeData_original
    def live_spike_receive_translated(self):
        self.stored_data = list()

        db_conn = DatabaseConnection(local_port=None)
        db_conn.add_database_callback(self.database_callback)

        p.setup(1.0)
        p.set_number_of_neurons_per_core(p.SpikeSourceArray, 5)

        pop = p.Population(
            25, p.SpikeSourceArray([[1000 + (i * 10)] for i in range(25)]))
        p.external_devices.activate_live_output_for(
            pop,
            translate_keys=True,
            database_notify_port_num=db_conn.local_port,
            tag=1,
            use_prefix=True,
            key_prefix=self.PREFIX,
            prefix_type=EIEIOPrefix.UPPER_HALF_WORD)

        p.run(1500)

        p.end()
        self.listener.close()
        self.conn.close()

        self.assertGreater(len(self.stored_data), 0)
        for key, time in self.stored_data:
            self.assertEqual(key >> 16, self.PREFIX)
            self.assertEqual(1000 + ((key & 0xFFFF) * 10), time)
Пример #3
0
def test(spikeTimes, trained_weights,label):

    #spikeTimes = extractSpikes(sample)
    runTime = int(max(max(spikeTimes)))+100

    ##########################################

    sim.setup(timestep=1)

    pre_pop = sim.Population(input_size, sim.SpikeSourceArray, {'spike_times': spikeTimes}, label="pre_pop")
    post_pop = sim.Population(output_size, sim.IF_curr_exp , cell_params_lif, label="post_pop")
   
    if len(trained_weights) > input_size:
        weigths = [[0 for j in range(output_size)] for i in range(input_size)] #np array? size 1024x25
        k=0
        for i in range(input_size):
            for j in range(output_size):
                weigths[i][j] = trained_weights[k]
                k += 1
    else:
        weigths = trained_weights

    connections = []
    
    #k = 0
    for n_pre in range(input_size): # len(untrained_weights) = input_size
        for n_post in range(output_size): # len(untrained_weight[0]) = output_size; 0 or any n_pre
            #connections.append((n_pre, n_post, weigths[n_pre][n_post]*(wMax), __delay__))
            connections.append((n_pre, n_post, weigths[n_pre][n_post]*(wMax)/max(trained_weights), __delay__)) #
            #k += 1

    prepost_proj = sim.Projection(pre_pop, post_pop, sim.FromListConnector(connections), synapse_type=sim.StaticSynapse(), receptor_type='excitatory') # no more learning !!
    #inhib_proj = sim.Projection(post_pop, post_pop, sim.AllToAllConnector(), synapse_type=sim.StaticSynapse(weight=inhibWeight, delay=__delay__), receptor_type='inhibitory')
    # no more lateral inhib

    post_pop.record(['v', 'spikes'])
    sim.run(runTime)

    neo = post_pop.get_data(['v', 'spikes'])
    spikes = neo.segments[0].spiketrains
    v = neo.segments[0].filter(name='v')[0]
    f1=pplt.Figure(
    # plot voltage 
    pplt.Panel(v, ylabel="Membrane potential (mV)", xticks=True, yticks=True, xlim=(0, runTime+100)),
    # raster plot
    pplt.Panel(spikes, xlabel="Time (ms)", xticks=True, yticks=True, markersize=2, xlim=(0, runTime+100)),
    title='Test with label ' + str(label),
    annotations='Test with label ' + str(label)
                )
    f1.save('plot/'+str(trylabel)+str(label)+'_test.png')
    f1.fig.texts=[]
    print("Weights:{}".format(prepost_proj.get('weight', 'list')))

    weight_list = [prepost_proj.get('weight', 'list'), prepost_proj.get('weight', format='list', with_address=False)]
    #predict_label=
    sim.end()
    return spikes
Пример #4
0
def generate_data():
    spikesTrain = []
    organisedData = {}
    for i in range(input_class):
        for j in range(input_len):
            neuid = (i, j)
            organisedData[neuid] = []
    for i in range(input_len):
        for j in range(output_size):
            neuid = (j, i)
            organisedData[neuid].append(j * input_len * v_co * 5 + i * v_co)
            organisedData[neuid].append(j * input_len * v_co * 5 +
                                        input_len * v_co * 1 + i * v_co)
            organisedData[neuid].append(j * input_len * v_co * 5 +
                                        input_len * v_co * 2 + i * v_co)
            organisedData[neuid].append(j * input_len * v_co * 5 +
                                        input_len * v_co * 3 + i * v_co)
            organisedData[neuid].append(j * input_len * v_co * 5 +
                                        input_len * v_co * 4 + i * v_co)
            organisedData[neuid].append(input_len * v_co * (3 * 5 + j) +
                                        i * v_co)

        #organisedData[neuid].append(i*v_co+2)


#        if neuid not in organisedData:
#            organisedData[neuid]=[i*v_co]
#        else:
#            organisedData[neuid].append(i*v_co)
    for i in range(input_class):
        for j in range(input_len):
            neuid = (i, j)
            organisedData[neuid].sort()
            spikesTrain.append(organisedData[neuid])

    runTime = int(max(max(spikesTrain)))
    sim.setup(timestep=1)

    noise = sim.Population(input_size, sim.SpikeSourcePoisson(), label='noise')

    noise.record(['spikes'])  #noise

    sim.run(runTime)
    neonoise = noise.get_data(["spikes"])
    spikesnoise = neonoise.segments[0].spiketrains  #noise
    sim.end()
    for i in range(input_size):
        for noisespike in spikesnoise[i]:
            spikesTrain[i].append(noisespike)
            spikesTrain[i].sort()
    return spikesTrain
Пример #5
0
def mapping_process():

    assert SIM_TIME > 0
    spynnaker.setup(timestep=1)
    spynnaker.set_number_of_neurons_per_core(spynnaker.IF_curr_exp, 50)
    time_space = readData()
    pn_population = setupLayer_PN(time_space)
    kc_population = setupLayer_KC()
    kc_population.record(["spikes"])
    pn_kc_projection = setupProjection_PN_KC(pn_population, kc_population)
    spynnaker.run(SIM_TIME)
    neo = kc_population.get_data(variables=["spikes"])
    spikeData_original = neo.segments[0].spiketrains
    spynnaker.end()
    return spikeData_original
Пример #6
0
def main():
    # setup timestep of simulation and minimum and maximum synaptic delays
    setup(timestep=simulationTimestep, min_delay=minSynapseDelay, max_delay=maxSynapseDelay, threads=4)

    # create a spike sources
    retinaLeft = createSpikeSource("Retina Left")
    retinaRight = createSpikeSource("Retina Right")
    
    # create network and attach the spike sources 
    network = createCooperativeNetwork(retinaLeft=retinaLeft, retinaRight=retinaRight)
    
    # run simulation for time in milliseconds
    print "Simulation started..."
    run(simulationTime)                                            
    print "Simulation ended."
    
    # plot results  
    plotExperiment(retinaLeft, retinaRight, network)
    # finalise program and simulation
    end()
Пример #7
0
def mapping_process():

    ###################################
    SIM_TIME = TIME_SLOT * DATA_AMOUNT  ##
    ###################################

    spynnaker.setup(timestep=1)
    spynnaker.set_number_of_neurons_per_core(spynnaker.IF_curr_exp, 50)
    # time_space     = readData()
    # Manage to obtain data correctly

    pn_population = setupLayer_PN(time_space)
    kc_population = setupLayer_KC()
    kc_population.record(["spikes"])

    pn_kc_projection = setupProjection_PN_KC(pn_population, kc_population)
    spynnaker.run(SIM_TIME)

    neo = kc_population.get_data(variables=["spikes"])
    spikeData_original = neo.segments[0].spiketrains
    spynnaker.end()
    return spikeData_original
Пример #8
0
def mapping_process():

    ###################################
    SIM_TIME = TIME_SLOT*DATA_AMOUNT ##
    ###################################

    response_space = generate_vr_response()
    spiking_space  = generate_spiking_time(response_space) 

    spynnaker.setup(timestep=1)
    spynnaker.set_number_of_neurons_per_core(spynnaker.IF_curr_exp, 250)

    pn_population  = setupLayer_PN(spiking_space)
    kc_population  = setupLayer_KC()
    kc_population.record(["spikes"])

    pn_kc_projection  = setupProjection_PN_KC(pn_population,kc_population)
    spynnaker.run(SIM_TIME)

    neo = kc_population.get_data(variables=["spikes"])
    spikeData_original= neo.segments[0].spiketrains
    spynnaker.end()
    return spikeData_original
Пример #9
0
        fast_injector.set("spike_times", [fast_spikes] + [[]] * 9)

    if last_spike_slow < total_run_time + time_to_run:
        slow_spikes = list(islice(slow_spike_iter, 10))
        last_spike_slow = slow_spikes[-1]
        slow_injector.set("spike_times", [slow_spikes] + [[]] * 9)

    sim.run(time_to_run)
    total_run_time += time_to_run

    plt.xlim(max(0, total_run_time - 5*time_to_run), total_run_time)
    if mode == "spikes":
        plt.ylim(-1, 101)
        all_spikes = populations[-1].getSpikes()
        print "Total spikes %d" % len(all_spikes)
        spikes = list(takewhile(lambda x: x[1] > total_run_time - time_to_run, all_spikes))
        plt.plot([i[1] for i in spikes], [i[0] for i in spikes], ".", markersize=2)
    else:
        plt.ylim(v_reset - 5, v_thresh + 5)
        voltages = list(ifilter(lambda x: x[0] == 1 and x[1] >= total_run_time - time_to_run,
            reversed(populations[0].get_v())))
        plt.plot([i[1] for i in voltages], [i[2] for i in voltages], "b-", markersize=1)

    plt.draw()
    plt.pause(0.001)

    if not plt.get_fignums():
        running = False

sim.end()
Пример #10
0
def train(spikeTimes,untrained_weights=None):
    organisedStim = {}
    labelSpikes = []
    #spikeTimes = generate_data()


        #for j in range(5):
        #    labelSpikes
        
    #labelSpikes[label] = [(input_len-1)*v_co+1,(input_len-1)*v_co*2+1,(input_len-1)*v_co*3+1,]
    
    
    if untrained_weights == None:
        untrained_weights = RandomDistribution('uniform', low=wMin, high=wMaxInit).next(input_size*output_size)
        #untrained_weights = RandomDistribution('normal_clipped', mu=0.1, sigma=0.05, low=wMin, high=wMaxInit).next(input_size*output_size)
        untrained_weights = np.around(untrained_weights, 3)
        #saveWeights(untrained_weights, 'untrained_weightssupmodel1traj')
        print ("init!")

    print "length untrained_weights :", len(untrained_weights)

    if len(untrained_weights)>input_size:
        training_weights = [[0 for j in range(output_size)] for i in range(input_size)] #np array? size 1024x25
        k=0
        for i in range(input_size):
            for j in range(output_size):
                training_weights[i][j] = untrained_weights[k]
                k += 1
    else:
        training_weights = untrained_weights

    connections = []
    for n_pre in range(input_size): # len(untrained_weights) = input_size
        for n_post in range(output_size): # len(untrained_weight[0]) = output_size; 0 or any n_pre
            connections.append((n_pre, n_post, training_weights[n_pre][n_post], __delay__)) #index
    runTime = int(max(max(spikeTimes))/3)+100
    #####################
    sim.setup(timestep=1)
    #def populations
    layer1=sim.Population(input_size,sim.SpikeSourceArray, {'spike_times': spikeTimes},label='inputspikes')
    layer2=sim.Population(output_size,sim.IF_curr_exp,cellparams=cell_params_lif,label='outputspikes')
    #supsignal=sim.Population(output_size,sim.SpikeSourceArray, {'spike_times': labelSpikes},label='supersignal')

    #def learning rule
    stdp = sim.STDPMechanism(
                            weight=untrained_weights,
                            #weight=0.02,  # this is the initial value of the weight
                            #delay="0.2 + 0.01*d",
                            timing_dependence=sim.SpikePairRule(tau_plus=tauPlus, tau_minus=tauMinus,A_plus=aPlus, A_minus=aMinus),
                            #weight_dependence=sim.MultiplicativeWeightDependence(w_min=wMin, w_max=wMax),
                            weight_dependence=sim.AdditiveWeightDependence(w_min=wMin, w_max=wMax),
                            #weight_dependence=sim.AdditiveWeightDependence(w_min=0, w_max=0.4),
                            dendritic_delay_fraction=1.0)
    #def projections

    #stdp_proj = sim.Projection(layer1, layer2, sim.FromListConnector(connections), synapse_type=stdp)
    stdp_proj = sim.Projection(layer1, layer2, sim.AllToAllConnector(), synapse_type=stdp)
    inhibitory_connections = sim.Projection(layer2, layer2, sim.AllToAllConnector(allow_self_connections=False), 
                                            synapse_type=sim.StaticSynapse(weight=inhibWeight, delay=__delay__), 
                                            receptor_type='inhibitory')
    #stim_proj = sim.Projection(supsignal, layer2, sim.OneToOneConnector(), 
    #                            synapse_type=sim.StaticSynapse(weight=stimWeight, delay=__delay__))
    
    layer1.record(['spikes'])

    layer2.record(['v','spikes'])
    #supsignal.record(['spikes'])
    sim.run(runTime)

    print("Weights:{}".format(stdp_proj.get('weight', 'list')))

    weight_list = [stdp_proj.get('weight', 'list'), stdp_proj.get('weight', format='list', with_address=False)]
    neo = layer2.get_data(["spikes", "v"])
    spikes = neo.segments[0].spiketrains
    v = neo.segments[0].filter(name='v')[0]
    #neostim = supsignal.get_data(["spikes"])
    #spikestim = neostim.segments[0].spiketrains
    neoinput= layer1.get_data(["spikes"])
    spikesinput = neoinput.segments[0].spiketrains

    plt.close('all')
    pplt.Figure(
    pplt.Panel(spikesinput,xticks=True, yticks=True, markersize=2, xlim=(0,runTime),xlabel='(a) Spikes of Input Layer'),
    #pplt.Panel(spikestim, xticks=True, yticks=True, markersize=2, xlim=(0,runTime),xlabel='(c) Spikes of Supervised Layer'),
    pplt.Panel(spikes, xticks=True, xlabel="(b) Spikes of Output Layer", yticks=True, markersize=2, xlim=(0,runTime)),
    pplt.Panel(v, ylabel="Membrane potential (mV)", xticks=True, yticks=True, xlim=(0,runTime),xlabel='(c) Membrane Potential of Output Layer\nTime (ms)'),
    title="Two Training",
    annotations="Twoway Training"
                ).save('SNN_DVS_un/plot_for_twoway/'+str(trylabel)+'_training.png')
    #plt.hist(weight_list[1], bins=100)
    
    plt.close('all')
    plt.hist([weight_list[1][0:input_size], weight_list[1][input_size:input_size*2], weight_list[1][input_size*2:]], bins=20, label=['neuron 0', 'neuron 1', 'neuron 2'], range=(0, wMax))
    plt.title('weight distribution')
    plt.xlabel('Weight value')
    plt.ylabel('Weight count')
    #plt.show()
    #plt.show()
                
    sim.end()
    return weight_list[1]
def test_snn(randomness      = False,
             data_dir        = "data/X_test_zied.npy",
             cls_dir         = "data/y_test_zied.npy",
             data            = "load",  # pass data as argument
             cls             = "load"): # pass labels as argument
    ###############################################################################
    ## Function Definitions
    ###############################################################################  
    def gaussian(x, mu, sig):
        return np.float16(np.exp(-np.power(x - mu, 2.) / (2 * np.power(sig, 2.))))

    def calc_pop_code(feature, rng1, rng2, num):
        interval = np.float(rng2 - rng1) / num
        means = np.arange(rng1 + interval,rng2 + interval, interval)
        pop_code = [gaussian(feature, mu, 0.025) for mu in means]
        return pop_code
        
    def PoissonTimes2(t_str=0., t_end=100., rate=10., seed=1.):
        times = [t_str]
        rng = np.random.RandomState(seed=seed)
        cont = True
        while cont == True:
            t_next = np.floor(times[-1] + 1000. * next_spike_times(rng, rate))
            if t_next < t_end - 30:
                times.append(t_next[0])
            else:
                cont = False
                return times[1:]

    def PoissonTimes(t_str=0., t_end=100., rate=10., seed=1.):
        if rate > 0:    
            interval = (t_end - t_str+0.) / rate
            times = np.arange(t_str + 30, t_end - 40, interval)
            return list(times)    
        else:
            return []

    def next_spike_times(rng,rate):
        return -np.log(1.0 - rng.rand(1)) / rate   

    def ismember(a, b):
        b = [b]
        bind = {}
        for i, elt in enumerate(b):
            if elt not in bind:
                bind[elt] = i
        aa=[bind.get(itm, -1) for itm in a]
        return sum(np.array(aa) + 1.)


    ###############################################################################
    ## Parameters
    ###############################################################################
    # Load Parameter
    parameters = np.load("output_files/parameters1.npy")
    parameters = parameters.item()
    # Load test data
    if data == "load" and cls == "load":
        data = np.load(data_dir)
        cls = np.load(cls_dir)
    # Simulation Parameters

    trial_num       = parameters["trial_num"] # How many samples (trials) from data will be presented 
    n_trials        = len(cls)#10#20 #int(trial_num) # Total trials
    time_int_trials = parameters["time_int_trials"] # (ms) Time to present each trial data 
    SIM_TIME        = n_trials * time_int_trials # Total simulation time (ms)
    ts              = parameters["ts"] # Timestep of Spinnaker (ms)
    min_del         = ts
    max_del         = 144 * ts
    p.setup(timestep=ts, min_delay=min_del, max_delay=max_del)


    ## Neuron Numbers

    n_feature = parameters["n_feature"] # Number of features
    n_pop     = parameters["n_pop"] # Number of neurons in one population
    n_cl      = parameters["n_cl"] # Number of classes at the output

    ## Connection Parameters
    # Weights
    wei_src_enc   = parameters["wei_src_enc"] # From Source Array at input to Encoding Layer(Exc)
    wei_enc_filt  = parameters["wei_enc_filt"] # From Encoding Layer to Filtering Layer Exc neurons (Exc)
    wei_filt_inh  = parameters["wei_filt_inh"]  # From Filtering Layer Inh neurons to Exc neurons (Inh)
    wei_cls_exc   = parameters["wei_cls_exc"] # From Output Layer Exc neurons to Inh neurons (Exc)
    wei_cls_inh   = parameters["wei_cls_inh"] # From Output Layer Inh neurons to Exc neurons (Inh) 
    wei_noise_poi = parameters["wei_noise_poi"]

    # Delays
    del_src_enc   = np.load("output_files/parameters2.npy")
    del_enc_filt  = parameters["del_enc_filt"]
    del_init_stdp = parameters["del_init_stdp"]
    del_cls_exc   = parameters["del_cls_exc"]
    del_cls_inh   = parameters["del_cls_inh"]
    del_noise_poi = parameters["del_noise_poi"]

    # Firing Rates
    noise_poi_rate     = parameters["noise_poi_rate"] 
    max_fr_input       = parameters["max_fr_input"] # maximum firing rate at the input layer
    max_fr_rate_output = parameters["max_fr_rate_output"] # Maximum firing rate at output (supervisory signal)

    ## Connection Probabilities
    prob_filt_inh       = parameters["prob_filt_inh"] # Prob of connectivity inhi-connections at Filtering Layer
    prob_stdp           = parameters["prob_stdp"] # Probability of STDP connections
    prob_output_inh     = parameters["prob_output_inh"] # Prob of inhi-connections at Output Layer
    prob_noise_poi_conn = parameters["prob_noise_poi_conn"]

    ## STDP Parameters
    tau_pl     = parameters["tau_pl"] #5
    tau_min    = tau_pl
    stdp_w_max = parameters["stdp_w_max"]
    stdp_w_min = parameters["stdp_w_min"]
    stdp_A_pl  = parameters["stdp_A_pl"]
    stdp_A_min = -stdp_A_pl # minus in order to get symmetric curve

    ## Neuron Parameters
    cell_params_lif = {'cm': 1.,
                       'i_offset': 0.0,
                       'tau_m': 20.,
                       'tau_refrac': 2.0,
                       'tau_syn_E': 5.0,
                       'tau_syn_I': 5.0,
                       'v_reset': -70.0,
                       'v_rest': -65.0,
                       'v_thresh': -65.0
                       }



    ###############################################################################
    ## Data Extraction
    ###############################################################################

    ## Extract Feature Data
    scale_data = parameters["scale_data"] # Scale features into [0-scale_data] range

    #data = np.load("features_without_artifact.npy")
    #data = np.load('X_test.npy')
    r, c = np.shape(data)

    # Threshold (to keep spikes amplitudes in range)
    thr_data_plus = parameters["thr_data_plus"]
    thr_data_minus = parameters["thr_data_minus"]
    data_rates = np.reshape(data, (1, r * c))[0]

    # Shift an normalize the data
    #dd = [d if d<thr_data_plus else thr_data_plus for d in data_rates]
    #dd = [d if d>thr_data_minus else thr_data_minus for d in dd]
    #dd2 = np.array(dd) - min(dd)
    #dd2 = dd2 / max(dd2) * 2
    dd2 = np.array(data_rates) - min(data_rates)
    dd2 = dd2 / max(dd2) * 2
    new_data_rates = []
    for r in dd2:
        new_data_rates += calc_pop_code(r, 0., scale_data, 
                                        n_feature / (n_pop + 0.0))
    data_rates = list(max_fr_input * np.array(new_data_rates))

    ## Extract Class Data
    #cls = np.load("classes_without_artifact.npy")
    #cls = np.load("y_test.npy")
    cls = cls.reshape(len(cls), 1)
    r_cl, c_cl = np.shape(cls)
    cls = list(np.reshape(cls, (1, r_cl * c_cl))[0])

    outputs = cls[:n_trials]
    poi_rate = data_rates[:n_feature * n_trials]
    t1 = 0#70
    t2 = int(t1 + n_trials)
    outputs = cls[t1:t2]
    poi_rate = data_rates[t1 * n_feature:n_feature * t2]



    ###############################################################################
    ## Create populations for different layers
    ###############################################################################
    poi_layer = []
    enc_layer = []
    filt_layer_exc = []
    out_layer_exc = []
    out_layer_inh = []

    # Calculate poisson spike times for features
    spike_times = [[] for i in range(n_feature)]
    for i in range(n_trials):
        t_st = i * time_int_trials
        t_end = t_st + time_int_trials
        ind = i * n_feature
        for j in range(n_feature):
            times = PoissonTimes(t_st, t_end, poi_rate[ind+j], 
                                 np.random.randint(100))
            for t in times:
                spike_times[j].append(t)

    if randomness == True:    # if True:  calculate "spike_times" (randomly) new
                              # if False: load previously saved "spike_times"
        np.save('output_files/spike_times_test.npy', spike_times)
    else:
        spike_times = np.load('output_files/spike_times_test.npy')



    # Spike source of input layer
    spike_source = p.Population(n_feature, 
                                p.SpikeSourceArray,
                                {'spike_times':spike_times},
                                label='spike_source')


    enc_layer = p.Population(n_feature * n_pop,
                             p.IF_curr_exp,
                             cell_params_lif,
                             label='enc_layer')
    
    filt_layer = p.Population(n_feature * n_pop,
                              p.IF_curr_exp, 
                              cell_params_lif, 
                              label='filt_layer')
    #filt_layer_inh=p.Population(n_feature*n_pop, p.IF_curr_exp, cell_params_lif, label='filt_layer_inh')


    for i in range(n_cl):    
        out_layer_exc.append(p.Population(n_pop, 
                                          p.IF_curr_exp, 
                                          cell_params_lif, 
                                          label='out_layer_exc{}'.format(i)))
        out_layer_inh.append(p.Population(n_pop, 
                                          p.IF_curr_exp, 
                                          cell_params_lif, 
                                          label='out_layer_inh{}'.format(i)))
        out_layer_exc[i].record()

    poisson_input = p.Population(n_pop * 2,
                                 p.SpikeSourcePoisson,
                                 {"rate":noise_poi_rate})

    enc_layer.record()
    filt_layer.record()


    ###############################################################################
    ## Projections
    ###############################################################################


    ## Connection List from Spike Source Array to Encoding Layer
    conn_inp_enc = np.load("output_files/conn_inp_enc.npy")

    #Connection List for Filtering Layer Inhibitory
    conn_filt_inh = np.load("output_files/conn_filt_inh.npy")

    ## STDP Connection List
    conn_stdp_list = np.load("output_files/conn_stdp_list.npy")
    diff_ind = np.load("output_files/diff_ind_filt.npy")
    diff_ind2 = np.load("output_files/diff_ind_filt2.npy")
    diff_thr2 = np.load("output_files/diff_thr2.npy")
    c1 = 0
    for cls_list in conn_stdp_list:
        c2 = 0
        cls_wei = np.load("output_files/stdp_weights{}.npy".format(c1))
        mx = max(cls_wei)
        for conn in cls_list:
    #        if ismember(diff_ind,conn[0]):
            if (ismember(diff_ind2,conn[0]) and 
                    np.sign(c1-0.5) * np.sign(diff_thr2[int(conn[0])]) == -1.):
    #            conn[2]=0.08*cls_wei[c2]/mx
               conn[2] = 0.08#*diff_thr2[conn[0]]/36.
    #        conn[2]=2.*cls_wei[c2]
            c2 += 1
        c1 += 1
    conn_stdp_list = list(conn_stdp_list)


    ## Output Layer Inhibitory Connection List

    conn_output_inh = np.load("output_files/conn_output_inh.npy")


    ## Spike Source to Encoding Layer
    p.Projection(spike_source,enc_layer,p.FromListConnector(conn_inp_enc))
    ## Encoding Layer to Filtering Layer
    p.Projection(enc_layer, filt_layer,
                 p.OneToOneConnector(weights=wei_enc_filt, 
                                     delays=del_enc_filt))
    ## Filtering Layer Inhibitory
    p.Projection(filt_layer,filt_layer,
                 p.FromListConnector(conn_filt_inh),
                target="inhibitory")

    ## STDP Connection between Filtering Layer and Output Layer
    stdp_proj = []
    for j in range(n_cl):
        stdp_proj.append(p.Projection(filt_layer, out_layer_exc[j], 
                                      p.FromListConnector(conn_stdp_list[j])))

    ## Connection between Output Layer neurons
    c = 0
    for i in range(n_cl):
        p.Projection(out_layer_exc[i], out_layer_inh[i],
                     p.OneToOneConnector(weights=wei_cls_exc, 
                                         delays=del_cls_exc))
        iter_array = [j for j in range(n_cl) if j != i]
        for j in iter_array:
            p.Projection(out_layer_inh[i], out_layer_exc[j],
                         p.FromListConnector(conn_output_inh[c]),
                                             target="inhibitory")
            c+=1

    ## Noisy poisson connection to encoding layer
    if randomness == True:    # if True:  connect noise to network
                              # if False: don't use noise in network
        p.Projection(poisson_input,
                     enc_layer, 
                     p.FixedProbabilityConnector(p_connect=prob_noise_poi_conn,
                                                 weights=wei_noise_poi, 
                                                 delays = del_noise_poi))
    

    ###############################################################################
    ## Simulation
    ###############################################################################
    p.run(SIM_TIME)

    Enc_Spikes = enc_layer.getSpikes()
    Filt_Exc_Spikes = filt_layer.getSpikes()
    #Filt_Inh_Spikes = filt_layer_inh.getSpikes()

    Out_Spikes = [[] for i in range(n_cl)]
    for i in range(n_cl):
        Out_Spikes[i] = out_layer_exc[i].getSpikes()

    p.end()

    ###############################################################################
    ## Plot
    ###############################################################################
    ## Plot 1
    if 0:
        pylab.figure()
        pylab.xlabel('Time (ms)')
        pylab.ylabel('Neuron ID')
        pylab.title('Encoding Layer Raster Plot')
        pylab.hold(True)
        pylab.plot([i[1] for i in Enc_Spikes], [i[0] for i in Enc_Spikes], ".b")
        pylab.hold(False)
        #pylab.axis([-10,c*SIM_TIME+100,-1,numInp+numOut+numInp+3])
        pylab.show()

    ## Plot 2-1
    if 0:
        pylab.figure()
        pylab.xlabel('Time (ms)')
        pylab.ylabel('Neuron ID')
        pylab.title('Filtering Layer Raster Plot')
        pylab.plot([i[1] for i in Filt_Exc_Spikes], [i[0] for i in Filt_Exc_Spikes], ".b")
        #pylab.axis([-10,c*SIM_TIME+100,-1,numInp+numOut+numInp+3])
        pylab.show()

    ## Plot 2-2
        pylab.figure()
        pylab.xlabel('Time (ms)')
        pylab.ylabel('Neuron ID')
        pylab.title('Filtering Layer Raster Plot')
        pylab.hold(True)
        pylab.plot([i[1] for i in Filt_Exc_Spikes], [i[0] for i in Filt_Exc_Spikes], ".b")
        time_ind=[i*time_int_trials for i in range(len(outputs))]
        for i in range(len(time_ind)):
            pylab.plot([time_ind[i],time_ind[i]],[0,2000],"r")
        pylab.hold(False)
        #pylab.axis([-10,c*SIM_TIME+100,-1,numInp+numOut+numInp+3])
        pylab.show()

    ## Plot 3-1
    if 0:
        pylab.figure()
        pylab.xlabel('Time (ms)')
        pylab.ylabel('Neuron ID')
        pylab.title('Association Layer Raster Plot\nTest for Trial Numbers {}-{}'.format(t1,t2))
        pylab.hold(True)
        c=0
        for array in Out_Spikes:
            pylab.plot([i[1] for i in array], [i[0]+c for i in array], ".b")
            c+=0.2
        time_cls=[j*time_int_trials+i for j in range(len(outputs)) for i in range(int(time_int_trials))]
        cls_lb=[outputs[j]+0.4 for j in range(len(outputs)) for i in range(int(time_int_trials))]
        time_ind=[i*time_int_trials for i in range(len(outputs))]
        for i in range(len(time_ind)):
            pylab.plot([time_ind[i],time_ind[i]],[0,10],"r")
        #pylab.plot(time_cls,cls_lb,".")
        pylab.hold(False)
        pylab.axis([-10,SIM_TIME+100,-1,n_pop+2])
        pylab.show()


    ## Plot 3-2
        pylab.figure()
        pylab.xlabel('Time (ms)')
        pylab.ylabel('Neuron ID')
        pylab.title(('Association Layer Raster Plot\n',
                     'Test for Samples {}-{}').format(t1,t2))
        pylab.hold(True)

        pylab.plot([i[1] for i in Out_Spikes[0]], 
                   [i[0] for i in Out_Spikes[0]], 
                   ".b")
        pylab.plot([i[1] for i in Out_Spikes[1]], 
                   [i[0] + 0.2 for i in Out_Spikes[1]], 
                   ".r")

        time_ind = [i * time_int_trials for i in range(len(outputs))]
        for i in range(len(time_ind)):
            pylab.plot([time_ind[i], time_ind[i]], [0,n_pop], "k")
        #pylab.plot(time_cls,cls_lb,".")
        pylab.hold(False)
        pylab.axis([-10, SIM_TIME+100, -1, n_pop + 2])
        pylab.legend(["AN1","AN2" ])
        pylab.show()



    sum_output = [[] for i in range(n_cl)]

    for i in range(n_trials):
        t_st = i * time_int_trials
        t_end = t_st + time_int_trials
        for j in range(n_cl):
            sum_output[j].append(np.sum(
                [1 for n, t in Out_Spikes[j] if t >= t_st and t < t_end])
            )

    ## Plot 4
    if 0:
    #    pylab.figure()
    #    pylab.hold(True)
    #    pylab.plot(sum_output[0], "b.")
    #    pylab.plot(sum_output[1], "r.")
    #    out_cl0 = [i for i in range(len(outputs)) if outputs[i] == 0]
    #    out_cl1 = [i for i in range(len(outputs)) if outputs[i] == 1]
    #    pylab.plot(out_cl0,[-2 for i in range(len(out_cl0))], "xb")
    #    pylab.plot(out_cl1,[-2 for i in range(len(out_cl1))], "xr")
    #    pylab.hold(False)
    #    pylab.title("Total spikes at each AN population for each trial")
    #    pylab.xlabel("Trials")
    #    pylab.ylabel("Firing Rate")
    #    pylab.legend(["Cl0","Cl1","Winning Cl 0", "Winning Cl 1"])
    #    pylab.axis([-2, n_trials + 2, -4, max(max(sum_output)) + 30])
    #    pylab.show()
        pylab.figure()
        pylab.hold(True)
        pylab.plot(sum_output[0], "b^")
        pylab.plot(sum_output[1], "r^")
        #pylab.plot(sum_output[0],"b")
        #pylab.plot(sum_output[1],"r")
        ppp0 = np.array(sum_output[0])
        ppp1 = np.array(sum_output[1])
        out_cl0 = [i for i in range(len(outputs)) if outputs[i] == 0]
        out_cl1 = [i for i in range(len(outputs)) if outputs[i] == 1]
        pylab.plot(out_cl0, ppp0[out_cl0], "bs")
        pylab.plot(out_cl1, ppp1[out_cl1], "rs")
        pylab.hold(False)
        pylab.title("Total spikes at each AN population for each trial")
        pylab.xlabel("Trials")
        pylab.ylabel("Spike Count for Each Trial")
        pylab.legend(["Cls 0", "Cls 1", "Actual Winner Cls 0", 
                      "Actual Winner Cls 1"])
        pylab.axis([-2, n_trials + 2, -4, max(max(sum_output)) + 30])
        pylab.show()


    ## Check Classification rate
    s = np.array(sum_output)
    cl = np.floor((np.sign(s[1] - s[0]) + 1) / 2)
    r_cl = np.array(outputs)
    wrong = np.sum(np.abs(cl - r_cl))
    rate = (n_trials - wrong) / n_trials
    print("success rate: {}%".format(abs(rate)*100.))

    print("cl:\n", cl)
    print("r_cl:\n", r_cl)

    ## Plot 5
    if 0:
        pylab.figure()
        cf = 0.1
        pylab.hold(True)
        cls_wei0 = np.load("output_files/stdp_weights{}.npy".format(0))
        mx = max(cls_wei0)
        cls_wei0 = cf * cls_wei0 / mx
        cls_wei1 = np.load("output_files/stdp_weights{}.npy".format(1))
        mx = max(cls_wei1)
        cls_wei1 = cf * cls_wei1/ mx
        l = min(len(cls_wei0), len(cls_wei1))
        new_array0 = [cls_wei0[i] for i in range(l) if cls_wei0[i] > cls_wei1[i]]
        x0 = [i for i in range(l) if cls_wei0[i] > cls_wei1[i]]
        new_array1 = [cls_wei1[i] for i in range(l) if cls_wei1[i] > cls_wei0[i]]
        x1 = [i for i in range(l) if cls_wei1[i] > cls_wei0[i]]

        pylab.plot(x0, new_array0, "gx")
        pylab.plot(x1, new_array1, "bx")
        #for i in range(2):
        #    cls_wei=np.load("stdp_weights{}.npy".format(i))
        #    mx=max(cls_wei)
        #    cls_wei=0.05*cls_wei/mx
        #    pylab.plot(cls_wei,"x")
        pylab.axis([-10, 2000, -0.1, 0.15])
        pylab.hold(False)
        pylab.show()
     
    ## Plot 7
    if 0:
        sum_filt = [[0 for i in range(n_feature * n_pop)] for j in range(n_cl)]
        sum_filt = np.array(sum_filt)

        for i in range(n_trials):
            t_st = i * time_int_trials
            t_end = t_st + time_int_trials
            cl = outputs[i]
            for n, t in Filt_Exc_Spikes:
                if t >= t_st and t < t_end:
                    sum_filt[int(cl),int(n)] = sum_filt[(cl),int(n)] + 1

        a4=sum_filt[0]
        b4=sum_filt[1]
        pylab.figure()
        pylab.hold(True)
        pylab.plot(a4,"b.")
        pylab.plot(b4,"r.")
        pylab.xlabel('Neuron ID')
        pylab.ylabel('Total Firing Rates Through Trials')
        pylab.title("Total Spiking Activity of Neurons at Decomposition Layer for Each Class")
        pylab.hold(False)
        pylab.legend(["Activity to AN1","Activity to AN2"])
        pylab.show()   

    return rate
Пример #12
0
def estimate_kb(cell_params_lif):
    cell_para = copy.deepcopy(cell_params_lif)
    random.seed(0)
    p.setup(timestep=1.0, min_delay=1.0, max_delay=16.0)
    run_s = 10.
    runtime = 1000. * run_s
    max_rate = 1000.
    ee_connector = p.OneToOneConnector(weights=1.0, delays=2.0)

    pop_list = []
    pop_output = []
    pop_source = []
    x = np.arange(0., 1.01, 0.1)
    count = 0
    trail = 10

    for i in x:
        for j in range(trail):  #trails for average
            pop_output.append(p.Population(1, p.IF_curr_exp, cell_para))
            poisson_spikes = mu.poisson_generator(i * max_rate, 0, runtime)
            pop_source.append(
                p.Population(1, p.SpikeSourceArray,
                             {'spike_times': poisson_spikes}))
            p.Projection(pop_source[count],
                         pop_output[count],
                         ee_connector,
                         target='excitatory')
            pop_output[count].record()
            count += 1

    count = 0
    for i in x:
        cell_para['i_offset'] = i
        pop_list.append(p.Population(1, p.IF_curr_exp, cell_para))
        pop_list[count].record()
        count += 1
    pop_list[count - 1].record_v()

    p.run(runtime)

    rate_I = np.zeros(count)
    rate_P = np.zeros(count)
    rate_P_max = np.zeros(count)
    rate_P_min = np.ones(count) * 1000.
    for i in range(count):
        spikes = pop_list[i].getSpikes(compatible_output=True)
        rate_I[i] = len(spikes) / run_s
        for j in range(trail):
            spikes = pop_output[i * trail +
                                j].getSpikes(compatible_output=True)
            spike_num = len(spikes) / run_s
            rate_P[i] += spike_num
            if spike_num > rate_P_max[i]:
                rate_P_max[i] = spike_num
            if spike_num < rate_P_min[i]:
                rate_P_min[i] = spike_num
        rate_P[i] /= trail
    '''
    #plot_spikes(spikes, 'Current = 10. mA')
    plt.plot(x, rate_I, label='current',)
    plt.plot(x, rate_P, label='Poisson input')
    plt.fill_between(x, rate_P_min, rate_P_max, facecolor = 'green', alpha=0.3)
    '''
    x0 = np.where(rate_P > 1.)[0][0]
    x1 = 4
    k = (rate_P[x1] - rate_P[x0]) / (x[x1] - x[x0])
    '''
    plt.plot(x, k*(x-x[x0])+rate_P[x0], label='linear')
    plt.legend(loc='upper left', shadow=True)
    plt.grid('on')
    plt.show()
    '''
    p.end()
    return k, x[x0], rate_P[x0]
def end():
    spynnaker.end()
def lancement_sim(cellSourceSpikes,
                  path,
                  weight_input=0,
                  weight_inter=0,
                  max_time=800000,
                  TIME_STEP=TIME_STEP,
                  input_n=input_n,
                  nb_neuron_int=nb_neuron_int,
                  nb_neuron_out=nb_neuron_out,
                  delay=delay,
                  p_conn_in_int=p_conn_in_int,
                  p_conn_int_out=p_conn_int_out,
                  v_tresh=v_tresh):

    simulator = 'spinnaker'
    # le max_delay doit être inférieur à 14*time_step
    sim.setup(timestep=TIME_STEP, min_delay=delay, max_delay=delay * 2)
    randoms = np.random.rand(100, 1)

    #defining network topology
    lif_curr_exp_params = {
        'cm': 1.0,  # The capacitance of the LIF neuron in nano-Farads
        'tau_m': 20.0,  # The time-constant of the RC circuit, in milliseconds
        'tau_refrac': 5.0,  # The refractory period, in milliseconds
        'v_reset':
        -65.0,  # The voltage to set the neuron at immediately after a spike
        'v_rest': -65.0,  # The ambient rest voltage of the neuron
        'v_thresh':
        -(v_tresh),  # The threshold voltage at which the neuron will spike
        'tau_syn_E': 5.0,  # The excitatory input current decay time-constant
        'tau_syn_I': 5.0,  # The inhibitory input current decay time-constant
        'i_offset': 0.0,  # A base input current to add each timestep
    }

    # Population d'entrée avec comme source le SpikeSourceArray en paramètre
    Input = sim.Population(input_n,
                           sim.SpikeSourceArray(spike_times=cellSourceSpikes),
                           label="Input")
    Input.record("spikes")

    # Définition des types de neurones et des couches intermédiaire, de sortie, ainsi que celle contenant le neurone de l'attention
    LIF_Intermediate = sim.IF_curr_exp(**lif_curr_exp_params)
    Intermediate = sim.Population(nb_neuron_int,
                                  LIF_Intermediate,
                                  label="Intermediate")
    Intermediate.record(("spikes", "v"))

    LIF_Output = sim.IF_curr_exp(**lif_curr_exp_params)
    Output = sim.Population(nb_neuron_out, LIF_Output, label="Output")
    Output.record(("spikes", "v"))

    LIF_delayer = sim.IF_curr_exp(**lif_curr_exp_params)
    Delay_n = sim.Population(1, LIF_delayer, label="Delay")
    Delay_n.record(("spikes", "v"))

    # set the stdp mechanisim parameters, we are going to use stdp in both connections between (input-intermediate) adn (intermediate-output)
    python_rng = NumpyRNG(seed=98497627)

    delay = delay  # (ms) synaptic time delay
    #A_minus

    # définition des connexions entre couches de neurones entrée <=> intermédiaire, intermédiaire <=> sortie
    # vérificatio pour savoir si on est dans le cas de la première simulation par défault ou si on doit injecter les poids
    if ((weight_input != 0) or (weight_inter != 0)):
        # cas ou l'on inject les poids
        Conn_input_inter = sim.Projection(
            Input,
            Intermediate,
            # Le fromListConnector pour injecter les poids
            connector=sim.FromListConnector(weight_input),
            receptor_type="excitatory",
            label="Connection input to intermediate",
            # des synapses static pour "suprimer" l'apprentissage
            synapse_type=sim.StaticSynapse())

        Conn_inter_output = sim.Projection(
            Intermediate,
            Output,  # pre and post population
            connector=sim.FromListConnector(weight_inter),
            receptor_type="excitatory",
            label="Connection intermediate to output",
            synapse_type=sim.StaticSynapse())

    else:
        # cas par défault
        Conn_input_inter = sim.Projection(
            Input,
            Intermediate,
            connector=sim.FixedProbabilityConnector(
                p_conn_in_int, allow_self_connections=False),
            synapse_type=sim.StaticSynapse(
                weight=RandomDistribution('normal', (3, 2.9), rng=python_rng)),
            receptor_type="excitatory",
            label="Connection input to intermediate")
        Conn_inter_output = sim.Projection(
            Intermediate,
            Output,  # pre and post population
            connector=sim.FixedProbabilityConnector(
                p_conn_int_out, allow_self_connections=False),
            synapse_type=sim.StaticSynapse(
                weight=RandomDistribution('normal', (3, 2.9), rng=python_rng)),
            receptor_type="excitatory",
            label="Connection intermediate to output")

    # définition des connexions inhibitrices des couches intermédiaire et de sortie
    FixedInhibitory_WTA = sim.StaticSynapse(weight=6)
    WTA_INT = sim.Projection(
        Intermediate,
        Intermediate,
        connector=sim.AllToAllConnector(allow_self_connections=False),
        synapse_type=FixedInhibitory_WTA,
        receptor_type="inhibitory",
        label="Connection WTA")

    WTA_OUT = sim.Projection(
        Output,
        Output,
        connector=sim.AllToAllConnector(allow_self_connections=False),
        synapse_type=FixedInhibitory_WTA,
        receptor_type="inhibitory",
        label="Connection WTA")

    # Connexion avec le neurone de l'attention
    FixedInhibitory_delayer = sim.StaticSynapse(weight=2)
    Delay_out = sim.Projection(
        Delay_n,
        Output,
        connector=sim.AllToAllConnector(allow_self_connections=False),
        synapse_type=FixedInhibitory_delayer,
        receptor_type="inhibitory",
        label="Connection WTA")

    Delay_inter = sim.Projection(
        Intermediate,
        Delay_n,
        connector=sim.AllToAllConnector(allow_self_connections=False),
        synapse_type=FixedInhibitory_delayer,
        receptor_type="inhibitory",
        label="Connection WTA")

    # On précise le nombre de neurone par coeurs au cas ou
    sim.set_number_of_neurons_per_core(sim.IF_curr_exp, 255)

    # on arrondie le temps de simulation, sinon avec les callbacks, on a une boucle infinie pour des temps d'arrêts plus précis que la fréquence des callbacks
    simtime = ceil(max_time)

    try:
        #lancement de la simulation
        sim.run(simtime)
        #récupération des infos sur les spike des trois couches
        neo = Output.get_data(variables=["spikes", "v"])
        spikes = neo.segments[0].spiketrains
        #print(spikes)
        v = neo.segments[0].filter(name='v')[0]

        neo_in = Input.get_data(variables=["spikes"])
        spikes_in = neo_in.segments[0].spiketrains
        #print(spikes_in)

        neo_intermediate = Intermediate.get_data(variables=["spikes", "v"])
        spikes_intermediate = neo_intermediate.segments[0].spiketrains
        #print(spikes_intermediate)
        v_intermediate = neo_intermediate.segments[0].filter(name='v')[0]
        #print(v_intermediate)

        sim.reset()
        sim.end()
    except:
        # Si la simulation fail, on set ces deux variables à zéros pour gérer l'erreur dans le script principal
        v = 0
        spikes = 0

    # Création et sauvegarde des graphs des graphs si la simluation s'est bien passée, + envoie des sorties de la fonction
    if (isinstance(spikes, list) and isinstance(v, AnalogSignal)):

        plot.Figure(
            # plot voltage for first ([0]) neuron
            plot.Panel(v,
                       ylabel="Membrane potential (mV)",
                       data_labels=[Output.label],
                       yticks=True,
                       xlim=(0, simtime)),
            # plot spikes (or in this case spike)
            plot.Panel(spikes, yticks=True, markersize=5, xlim=(0, simtime)),
            title="Spiking activity of the output layer during test",
            annotations="Simulated with {}".format(sim.name())).save(
                "./Generated_data/tests/" + path +
                "/output_layer_membrane_voltage_and_spikes.png")

        plot.Figure(
            # plot voltage for first ([0]) neuron
            plot.Panel(v_intermediate,
                       ylabel="Membrane potential (mV)",
                       data_labels=[Output.label],
                       yticks=True,
                       xlim=(0, simtime)),
            # plot spikes (or in this case spike)
            plot.Panel(spikes_intermediate,
                       yticks=True,
                       markersize=5,
                       xlim=(0, simtime)),
            title="Spiking activity of the intermediate layer during test",
            annotations="Simulated with {}".format(sim.name())).save(
                "./Generated_data/tests/" + path +
                "/intermediate_layer_membrane_voltage_and_spikes.png")

        return v, spikes
    else:
        print(
            "simulation failed with parameters : (l'affichage des paramètres ayant causés le disfonctionnement de la simulation sera traitée à une date ultérieur, merci!)"
        )
        return 0, 0
Пример #15
0
    def run_sim(self):
        """
        Sets up and runs the simulation
        """
        num_neurons = 1471  # total neurons in network
        num_inputs = 14     # number of neurons considered inputs
        num_runs = 1        # number of times to loop the learning
        num_samples = 1     # number of samples to learn`
        sim_time = 1000.0    # time to run sim for`
        inhibitory_split = 0.2
        connection_probability_factor = 0.02
        plot_spikes = True
        save_figures = True
        show_figures = True
        sim_start_time = strftime("%Y-%m-%d_%H:%M")

        cell_params_lif = {'cm': 0.25, 'i_offset': 0.0, 'tau_m': 10.0, 'tau_refrac': 2.0, 'tau_syn_E': 3.0,
                           'tau_syn_I': 3.0, 'v_reset': -65.0, 'v_rest': -65.0, 'v_thresh': -50.0}

        # Create the 3d structure of the NeuCube based on the user's given structure file
        network_structure = NetworkStructure()
        network_structure.load_structure_file()
        network_structure.load_input_location_file()
        # Calculate the inter-neuron distance to be used in the small world connections
        network_structure.calculate_distances()
        # Generate two connection matrices for excitatory and inhibitory neurons based on your defined split
        network_structure.calculate_connection_matrix(inhibitory_split, connection_probability_factor)
        # Get these lists to be used when connecting the neurons later
        excitatory_connection_list = network_structure.get_excitatory_connection_list()
        inhibitory_connection_list = network_structure.get_inhibitory_connection_list()
        # Choose the correct neurons to connect them to, based on your a-priori knowledge of the data source -- eg, EEG
        # to 10-20 locations, fMRI to voxel locations, etc.
        input_neuron_indexes = network_structure.find_input_neurons()
        # Make the input connections based on this new list
        input_weight = 4.0
        input_connection_list = []
        for index, input_neuron_index in enumerate(input_neuron_indexes):
            input_connection_list.append((index, input_neuron_index, input_weight, 0))

        for run_number in xrange(num_runs):
            excitatory_weights = []
            inhibitory_weights = []
            for sample_number in xrange(num_samples):
                # At the moment with the limitations of the SpiNNaker hardware we have to reinstantiate EVERYTHING
                # each run. In future there will be some form of repetition added, where the structure stays in memory
                # on the SpiNNaker and only the input spikes need to be updated.

                data_prefix = sim_start_time + "_r" + str(run_number + 1) + "-s" + str(sample_number + 1)

                # Set up the hardware - min_delay should never be less than the timestep.
                # Timestep should = 1.0 (ms) for normal realtime applications
                p.setup(timestep=1.0, min_delay=1.0)
                p.set_number_of_neurons_per_core("IF_curr_exp", 100)

                # Create a population of neurons for the reservoir
                neurons = p.Population(num_neurons, p.IF_curr_exp, cell_params_lif, label="Reservoir")

                # Setup excitatory STDP
                timing_rule_ex = p.SpikePairRule(tau_plus=20.0, tau_minus=20.0)
                weight_rule_ex = p.AdditiveWeightDependence(w_min=0.1, w_max=1.0, A_plus=0.02, A_minus=0.02)
                stdp_model_ex  = p.STDPMechanism(timing_dependence=timing_rule_ex, weight_dependence=weight_rule_ex)
                # Setup inhibitory STDP
                timing_rule_inh = p.SpikePairRule(tau_plus=20.0, tau_minus=20.0)
                weight_rule_inh = p.AdditiveWeightDependence(w_min=0.0, w_max=0.6, A_plus=0.02, A_minus=0.02)
                stdp_model_inh  = p.STDPMechanism(timing_dependence=timing_rule_inh, weight_dependence=weight_rule_inh)

                # record the spikes from that population
                neurons.record('spikes')

                # Generate a population of SpikeSourceArrays containing the encoded input spike data
                # eg. spike_sources = p.Population(14, p.SpikeSourceArray, {'spike_times': [[]]})
                # for the moment I'm going to cheat and just use poisson trains as I don't have data with me
                spike_sources = p.Population(num_inputs, p.SpikeSourcePoisson, {'rate': rand.randint(20, 80)},
                                             label="Poisson_pop_E")

                # Connect the input spike sources with the "input" neurons
                connected_inputs = p.Projection(spike_sources, neurons, p.FromListConnector(input_connection_list))

                # If we have weights saved/recorded from a previous run of this network, load them into the structure
                # population.set(weights=weights_list) and population.setWeights(weight_list) are not supported in
                # SpiNNaker at the moment so we have to do this manually.
                if excitatory_weights and inhibitory_weights:
                    for index, ex_connection in enumerate(excitatory_connection_list):
                        ex_connection[2] = excitatory_weights[index]
                    for index, in_connection in enumerate(inhibitory_connection_list):
                        in_connection[2] = inhibitory_weights[index]

                # Setup the connectors
                excitatory_connector = p.FromListConnector(excitatory_connection_list)
                inhibitory_connector = p.FromListConnector(inhibitory_connection_list)

                # Connect the excitatory and inhibitory neuron populations
                connected_excitatory_neurons = p.Projection(neurons, neurons, excitatory_connector,
                                                            synapse_dynamics=p.SynapseDynamics(slow=stdp_model_ex),
                                                            target="excitatory")
                connected_inhibitory_neurons = p.Projection(neurons, neurons, inhibitory_connector,
                                                            synapse_dynamics=p.SynapseDynamics(slow=stdp_model_inh),
                                                            target="inhibitory")

                # Set up recording the spike trains of all the neurons
                neurons.record()
                spike_sources.record()

                # Run the actual simulation
                p.run(sim_time)

                # Save the output spikes
                spikes_out = neurons.getSpikes(compatible_output=True)
                input_spikes_out = spike_sources.getSpikes(compatible_output=True)
                # Get the synaptic weights of all the neurons
                excitatory_weights = connected_excitatory_neurons.getWeights()
                inhibitory_weights = connected_inhibitory_neurons.getWeights()

                # when we're all done, clean up
                p.end()

                # Make some plots, save them if required. Check if you need to either save or show them, because if not,
                # there's no point wasting time plotting things nobody will ever see.
                if plot_spikes and (save_figures or show_figures):
                    plot = Plot(save_figures, data_prefix)
                    # Plot the 3D structure of the network
                    plot.plot_structure(network_structure.get_positions(), figure_number=0)
                    # Plot the spikes
                    plot.plot_spike_raster(spikes_out, sim_time, num_neurons, figure_number=1)
                    # Plot the weights
                    plot.plot_both_weights(excitatory_weights, inhibitory_weights, figure_number=2)
                    # If we want to show the figures, show them now, otherwise ignore and move on
                    if show_figures:
                        # Show them all at once
                        plot.show_plots()
                    plot.clear_figures()
                    plot = None
Пример #16
0
        print(spikesum)
        print('estimate = ' + str(np.argmax(spikesum)))

    except:
        print("COULD NOT RUN TRIAL " + str(trial))
        pred_labels.append(np.zeros(5))

   


#get spikes for plotting
spiketrains_all.append(spiketrains_flat)
    

#end simulation
pynn.end()




print('simulation end')

s = []
a = []
i = 0
for spiketrain in spiketrains_all:
    eventdata = []
    for dat in spiketrain:
        eventdata.append(np.nonzero(dat)[0])
    plt.figure()
    plt.eventplot(eventdata)
def end():
    spynnaker.end()
    pylab.title('spikes')
    pylab.show()
else:
    print "No spikes received"

# Make some graphs

if v is not None:
    ticks = len(v) / nNeurons
    pylab.figure()
    pylab.xlabel('Time/ms')
    pylab.ylabel('v')
    pylab.title('v')
    for pos in range(0, nNeurons, 20):
        v_for_neuron = v[pos * ticks: (pos + 1) * ticks]
        pylab.plot([i[2] for i in v_for_neuron])
    pylab.show()

if gsyn is not None:
    ticks = len(gsyn) / nNeurons
    pylab.figure()
    pylab.xlabel('Time/ms')
    pylab.ylabel('gsyn')
    pylab.title('gsyn')
    for pos in range(0, nNeurons, 20):
        gsyn_for_neuron = gsyn[pos * ticks: (pos + 1) * ticks]
        pylab.plot([i[2] for i in gsyn_for_neuron])
    pylab.show()

p.end()
Пример #19
0
    n = n % len(seq)
    return seq[n:] + seq[:n]

# connect all populations, but don't close the chain
for pop_a, pop_b in zip(all_pops, shift(all_pops, 1)[:-1]):
    pynn.Projection(pop_a, pop_b, con_fixednumberpre, target='excitatory')

pynn.run(duration)

spikes = None

# Collect and record spikes
for pop in all_pops:
    new_spikes = pop.getSpikes(compatible_output=True)
    if new_spikes is not None:
        numpy.fliplr(new_spikes)
        new_spikes = new_spikes / [1, 1000.0]
        if spikes is None:
            spikes = new_spikes
        else:
            new_spikes = new_spikes + [len(spikes), 0]
            spikes = numpy.concatenate((spikes, new_spikes), axis=0)
if spikes is None:
    spikes = []

print "N spikes", len(spikes)

numpy.savetxt("spikes.dat", spikes)

pynn.end()
    pylab.title('spikes')
    pylab.show()
else:
    print "No spikes received"

# Make some graphs

if v is not None:
    ticks = len(v) / nNeurons
    pylab.figure()
    pylab.xlabel('Time/ms')
    pylab.ylabel('v')
    pylab.title('v')
    for pos in range(0, nNeurons, 20):
        v_for_neuron = v[pos * ticks: (pos + 1) * ticks]
        pylab.plot([i[2] for i in v_for_neuron])
    pylab.show()

if gsyn is not None:
    ticks = len(gsyn) / nNeurons
    pylab.figure()
    pylab.xlabel('Time/ms')
    pylab.ylabel('gsyn')
    pylab.title('gsyn')
    for pos in range(0, nNeurons, 20):
        gsyn_for_neuron = gsyn[pos * ticks: (pos + 1) * ticks]
        pylab.plot([i[2] for i in gsyn_for_neuron])
    pylab.show()

p.end()
def train_snn(### Settings
              data_dir        = "data/X_train_zied.npy",
              cls_dir         = "data/y_train_zied.npy",
              data            = "load",    # pass data as argument
              cls             = "load",    # pass labels as argument
              save            = True,    # True to save all parameters of the network
              randomness      = True,
              reverse_src_del = False,
              use_old_weights = False,
              rand_data       = False,
              ### Parameters
              n_training      = 2,  # How many times the samples will be iterated
              ts              = 1., # Timestep of Spinnaker (ms)
              trial_num       = 10, # How many samples (trials) from data used
              # Network
              n_feature       = 80, # Number of features (= 4 features * 20 neurons)
              # Weights
              wei_src_enc     = .2,    # From Source Array at input to Encoding Layer(Exc)
              wei_enc_filt    = .6,    # From Encoding Layer to Filtering Layer Exc neurons (Exc)
              wei_filt_inh    = 0.03,  # From Filtering Layer Inh neurons to Exc neurons (Inh)
              wei_init_stdp   = .0,    # From Filtering Layer Exc neurons to Output Layer (Exc)
              wei_cls_exc     = 0.9,   # From Output Layer Exc neurons to Inh neurons (Exc)
              wei_cls_inh     = 50,#0.1,#,10   # From Output Layer Inh neurons to Exc neurons (Inh) 
              wei_source_outp = 10.,   # From Source Array at output to Output Layer Exc neurons (Exc)
              wei_noise_poi   = 0.02,
              # Delays
              del_init_stdp   = 1.,
              del_source_outp = 1.,
              del_noise_poi   = 1.,
              # Connection Probabilities
              prob_filt_inh   = .4, # Prob of connectivity inhibitory connections at FilT_Layer
              prob_stdp       = 1., # Prob of STDP connections
              prob_output_inh = .7, # Prob of inhibitory connections at Output Layer
              prob_noise_poi_conn = 0.02,
              ## STDP Parameters
              tau_pl         = 5.,        
              stdp_w_max     = 0.4,           # default 0.4
              stdp_w_min     = 0.0,           # default 0.0
              stdp_A_pl      = 2,#0.02,# 0.01,          # default 0.01 (below 0.01 weights don't change)
                                # => minus in order to get symmetric curve
              # Data Extraction
              scale_data     = 2.): # Scale features into [0-scale_data] range
              
    
    # BUG fix:
    # n_feature is somehow a tuple
#    try:
#        trial_num = trial_num[0]
#    except Exception as e:
#        print("\n\n\n EXCEPTION TRIGGERED !!!! \n\n\n")
#        pass

    ############################################################################
    ## Function Definitions
    ############################################################################  
    def gaussian(x, mu, sig):
        return np.float16(np.exp(-np.power(x - mu, 2.) /
               (2 * np.power(sig, 2.))))

    def calc_pop_code(feature, rng1, rng2, num):
        interval=np.float(rng2-rng1)/num
        means=np.arange(rng1+interval, rng2+interval, interval)
        pop_code=[gaussian(feature,mu,0.025) for mu in means]
        return pop_code
        
    def PoissonTimes2(t_str=0., t_end=100., rate=10., seed=1.):
        times = [t_str]
        rng = np.random.RandomState(seed=seed)
        cont = True
        while cont == True:
            t_next = np.floor(times[-1] + 1000. * next_spike_times(rng,rate))
            if t_next < t_end - 30:
                times.append(t_next[0])
            else:
                cont=False
                return times[1:]

    def PoissonTimes(t_str=0., t_end=100., rate=10., seed=1., max_rate=0):
        if rate>0:    
            interval = (t_end - t_str + 0.) / rate
            # Add additional reverse_src_del
            if reverse_src_del == True:
                times = np.arange(t_str + 30, t_end - 40, interval)
                # add reverse proportional delay
                rev_del = np.ceil(max_rate / rate)
                if rev_del != np.inf:
                    times += rev_del
            else:
                times = np.arange(t_str + 30, t_end - 40, interval)
            return list(times)    
        else:
            return []

    def next_spike_times(rng,rate):
        return -np.log(1.0-rng.rand(1)) / rate   

    def ismember(a, b):
        b=[b]
        bind = {}
        for i, elt in enumerate(b):
            if elt not in bind:
                bind[elt] = i
        aa=[bind.get(itm, -1) for itm in a]
        return sum(np.array(aa)+1.)

    def get_data(trial_num, test_num=10):
        # trial_num:    number of training samples
        # test_num:     number of test samples
        pass

    def rand_sample_of_train_set(n):
        # n:      number of features
        # Return: np.array containing n samples of the training set
        X = np.load(data_dir)
        y = np.load(cls_dir)
        idx = np.random.randint(len(X), size=n)
        return X[idx], y[idx]        
        

    ############################################################################
    ## Parameters
    ############################################################################
    # Load training data
    # only load n_rand_data features of training set
    if rand_data == True:
        data, cls = rand_sample_of_train_set(trial_num)
    # load all features of training set
    else:    # load data if its not in passed as fuct argument
        if data == "load" and cls == "load":
            data = np.load(data_dir)
            cls = np.load(cls_dir)

    # Simulation Parameters
    trial_num = len(cls) # How many samples (trials) from data will be presented 
    #n_training      = 1  # How many times the samples will be iterated
    n_trials        = n_training * trial_num # Total trials
    time_int_trials = 200. # (ms) Time to present each trial data 
    SIM_TIME        = n_trials * time_int_trials # Total simulation time (ms)
    #ts              = 1. # Timestep of Spinnaker (ms)
    min_del         = ts
    max_del         = 144 * ts
    p.setup(timestep=ts, min_delay=min_del, max_delay=max_del)


    ## Neuron Numbers
    #n_feature = 80   # Number of features (= 4 features * 20 neurons)
                     #           => 20 neuros: resolution of encoding
    n_pop     = data.shape[1] #4    # Number of neurons in one population (X dim)
    n_cl      = 2    # Number of classes at the output

    ## Connection Parameters
    # Weights
 #   wei_src_enc     = .2    # From Source Array at input to Encoding Layer(Exc)
 #   wei_enc_filt    = .6    # From Encoding Layer to Filtering Layer Exc neurons (Exc)
 #   wei_filt_inh    = 0.03  # From Filtering Layer Inh neurons to Exc neurons (Inh)
 #   wei_init_stdp   = .0    # From Filtering Layer Exc neurons to Output Layer (Exc)
 #   wei_cls_exc     = 0.9   # From Output Layer Exc neurons to Inh neurons (Exc)
 #   wei_cls_inh     = 10     # 0.1   # From Output Layer Inh neurons to Exc neurons (Inh) 
 #   wei_source_outp = 10.   # From Source Array at output to Output Layer Exc neurons (Exc)
 #   wei_noise_poi   = 0.02

    # Delays
    if randomness == True:    # if True:  calculate "del_src_enc" (randomly) new
                              # if False: load previously saved "del_src_enc"
        if reverse_src_del == True:
            # calc delays erversly proportional to feature value
            del_src_enc = np.zeros(n_feature*n_pop)
        else:
            del_src_enc = [int(np.random.randint(n_pop)+1)
                           for _ in range(n_feature*n_pop)]

        np.save("output_files/del_src_enc.npy", del_src_enc)
    else:
        #del_src_enc = np.load("output_files/del_src_enc.npy")
        del_src_enc = np.ones(n_feature*n_pop).astype(int) #[1 for _ in range(n_feature*n_pop)]
    del_enc_filt    = ts
    del_filt_inh    = ts
#    del_init_stdp   = 1.
    del_cls_exc     = ts
    del_cls_inh     = ts
#    del_source_outp = 1.
#    del_noise_poi   = 1.

    # Firing Rates
    noise_poi_rate  = 10. 
    max_fr_input    = 100.   # maximum firing rate at the input layer
    max_fr_rate_output = 20. # Maximum firing rate at output (supervisory signal)

    ## Connection Probabilities
#    prob_filt_inh   = .4 # Prob of connectivity inhibitory connections at FilT_Layer
#    prob_stdp       = 1. # Prob of STDP connections
#    prob_output_inh = .7 # Prob of inhibitory connections at Output Layer
#    prob_noise_poi_conn = 0.02

    ## STDP Parameters
#    tau_pl      = 0.3           # (0.2 - 0.3 works)
    tau_min     = tau_pl        # default tau_pl
#    stdp_w_max  = 0.4           # default 0.4
#    stdp_w_min  = 0.0           # default 0.0
#    stdp_A_pl   = 0.01          # default 0.01 (below 0.01 weights don't change)
    stdp_A_min  = -stdp_A_pl    # default - stdp_A_pl 
                                # => minus in order to get symmetric curve

    ## Neuron Parameters
    cell_params_lif = {'cm': 0.25,# 0.25,
                       'i_offset': 0.0,
                       'tau_m': 20.,
                       'tau_refrac': 2.0,
                       'tau_syn_E': 5.0,
                       'tau_syn_I': 5.0,
                       'v_reset': -70.0,
                       'v_rest': -65.0,
                       'v_thresh': -50#-50
                       }


    ############################################################################
    ## Data Extraction
    ############################################################################

    ## Extract Feature Data
#    scale_data = 2. # Scale features into [0-scale_data] range

    r,c = np.shape(data)

    data_rates = np.reshape(data, (1, r*c))[0]
    # Threshold (to keep spikes in range)
    thr_data_plus = 30
    thr_data_minus = -10
    #dd = [d if d<thr_data_plus else thr_data_plus for d in data_rates]
    #dd = [d if d>thr_data_minus else thr_data_minus for d in dd]

    # Shift and normalize data
    #dd2 = np.array(dd) - min(dd)
    dd2 = np.array(data_rates) - min(data_rates)
    dd2 = dd2 / max(dd2) * 2
    new_data_rates = []
    for r in dd2:
        new_data_rates += calc_pop_code(r, 0., scale_data, n_feature /
                                        (n_pop + 0.0))
    data_rates = list(max_fr_input*np.array(new_data_rates))

    ## Extract Class Data
    # load class vector
    #cls = np.load(path_y)
    cls = np.reshape(cls, (len(cls),1))    # create col vector
    r_cl, c_cl = np.shape(cls)
    #cls = list(np.reshape(cls, (1, r_cl * c_cl))[0] - 1)
    cls = list(np.reshape(cls, (1, r_cl * c_cl))[0])


    ## The class and rate information to be used during the simulation
    outputs = n_training * cls[0:trial_num]    # positiv, ints
    poi_rate = n_training  * data_rates[0:trial_num * n_feature]

    ## Save parameters to be used in test
    parameter_dict = {"n_feature":n_feature, "n_pop":n_pop,"n_cl":n_cl,
        "wei_src_enc":wei_src_enc, "wei_enc_filt":wei_enc_filt,
        "wei_filt_inh":wei_filt_inh, "wei_cls_exc":wei_cls_exc,
        "wei_cls_inh":wei_cls_inh, "del_enc_filt":del_enc_filt,
        "del_init_stdp":del_init_stdp, "del_cls_exc":del_cls_exc,
        "del_cls_inh":del_cls_inh, "trial_num":trial_num,
        "time_int_trials":time_int_trials, "scale_data":scale_data,
        "ts":ts,"max_fr_input":max_fr_input, 
        "max_fr_rate_output":max_fr_rate_output,
        "noise_poi_rate":noise_poi_rate, "max_fr_input":max_fr_input,
        "max_fr_rate_output":max_fr_rate_output, "prob_filt_inh":prob_filt_inh,
        "prob_stdp":prob_stdp, "prob_output_inh":prob_output_inh,
        "prob_noise_poi_conn":prob_noise_poi_conn, "tau_pl":tau_pl,
        "stdp_w_max":stdp_w_max, "stdp_w_min":stdp_w_min, "stdp_A_pl":stdp_A_pl,
        "wei_noise_poi":wei_noise_poi, "del_noise_poi":del_noise_poi,
        "thr_data_plus":thr_data_plus, "thr_data_minus":thr_data_minus
        }

    if save == True:
        np.save("output_files/parameters1",parameter_dict)
        np.save("output_files/parameters2",del_src_enc)

    ############################################################################
    ## Create populations for different layers
    ############################################################################
    poi_layer = []
    enc_layer = []
    filt_layer_exc = []
    out_layer_exc = []
    out_layer_inh = []
    out_spike_source = []

    # Calculate spike times at the input using the rate information coming from features
    spike_times = [[] for i in range(n_feature)]
    for i in range(n_trials):
        t_st = i * time_int_trials
        t_end = t_st + time_int_trials
        ind = i * n_feature
        for j in range(n_feature):
            times = PoissonTimes(t_st, t_end, poi_rate[ind+j], 
                                 np.random.randint(100), max_rate=max(poi_rate))
            for t in times:
                spike_times[j].append(t)

    if randomness == True:    # if True:  calculate "spike_times" (randomly) new
                              # uf False: load previously saved "spike_times"
        np.save('output_files/spike_times_train.npy', spike_times)
    else:
        spike_times = np.load('output_files/spike_times_train.npy')



    # Calculate spike times at the output (as supervisory signal)
    out_spike_times=[[] for i in range(n_cl)]
    for i in range(n_trials):
        t_st = i * time_int_trials
        t_end = t_st + time_int_trials
        ind = outputs[i]
        times = PoissonTimes(t_st, t_end, max_fr_rate_output, 
                             np.random.randint(100))
        for t in times:
                out_spike_times[int(ind)].append(t)

    if randomness == True:    # if True:  calculate "out_spike_times" (randomly) new
                              # uf False: load previously saved "out_spike_times"
        np.save('output_files/out_spike_times.npy', out_spike_times)
    else:
        out_spike_times = np.load('output_files/out_spike_times.npy')


    # Spike source of input layer
    spike_source=p.Population(n_feature, 
                              p.SpikeSourceArray,
                              {'spike_times':spike_times},
                              label='spike_source')

    # Spike source of output layer (Supervisory signal)
    for i in range(n_cl):
        out_spike_source.append(p.Population(1, p.SpikeSourceArray,
            {'spike_times':[out_spike_times[i]]}, label='out_spike_source'))

    # Encoding layer and Filtering Layer definitions
    enc_layer = p.Population(n_feature * n_pop, 
                             p.IF_curr_exp,
                             cell_params_lif, 
                             label='enc_layer')
    filt_layer = p.Population(n_feature * n_pop, 
                              p.IF_curr_exp, 
                              cell_params_lif, 
                              label='filt_layer')

    # Excitatory and Inhibitory population definitions at the output
    for i in range(n_cl):    
        out_layer_exc.append(p.Population(n_pop, 
                                          p.IF_curr_exp, 
                                          cell_params_lif,
                                          label='out_layer_exc{}'.format(i)))
        out_layer_inh.append(p.Population(n_pop, 
                                          p.IF_curr_exp, 
                                          cell_params_lif, 
                                          label='out_layer_inh{}'.format(i)))
        out_layer_exc[i].record()

    # Noisy poisson population at the input

    poisson_input = p.Population(n_pop * 2, 
                                 p.SpikeSourcePoisson,
                                 {"rate":noise_poi_rate})


    # Record Spikes
    enc_layer.record()
    filt_layer.record()

    #enc_layer.initialize('v',p.RandomDistribution('uniform',[-51.,-69.]))
    #filt_layer.initialize('v',p.RandomDistribution('uniform',[-51.,-69.]))

    ############################################################################
    ## Projections
    ############################################################################

    ## Connection List from Spike Source Array to Encoding Layer
    conn_inp_enc=[]

    for i in range(n_feature):
        ind=i*n_pop
        for j in range(n_pop):
            conn_inp_enc.append([i,ind+j,wei_src_enc,del_src_enc[ind+j]])

    if save == True:
        np.save("output_files/conn_inp_enc",conn_inp_enc)

    ## Connection List for Filtering Layer Inhibitory
    if randomness == True:    # if True:  calculate conn_filt_inh (randomly) new
                              # uf False: load previously saved conn_filt_inh
        conn_filt_inh=[]
        for i in range(n_feature):
            rng1=i*n_pop
            rng2=rng1+n_pop
            inp=range(rng1,rng2)
            outp=range(0,rng1)+range(rng2,n_feature*n_pop)
            for ii in inp:
                for jj in outp:
                    if prob_filt_inh>np.random.rand():
                        conn_filt_inh.append([ii,jj,wei_filt_inh,del_filt_inh])
        if save == True:
            np.save('output_files/conn_filt_inh.npy', conn_filt_inh)
    else:
        conn_filt_inh = np.load('output_files/conn_filt_inh.npy')

    
    ## STDP Connection List 
    if randomness == True:    # if True:  calculate conn_stdp_list (randomly) new
                              # uf False: load previously saved conn_stdp_list
        conn_stdp_list=[[] for i in range(n_cl)]
        for i in range(n_cl): # For each population at output layer
            if use_old_weights == True:
                cl_weights = np.load(
                                "output_files/stdp_weights{}.npy".format(i))
                w = 0
            for ii in range(n_pop * n_feature): # For each neuron in filtering layer
                for jj in range(n_pop): # For each neuron in each population of output layer
                    if prob_stdp > np.random.rand(): # If the prob of connection is satiesfied
                        # Make the connection
                        if use_old_weights == True:
                            conn_stdp_list[i].append([ii,
                                                      jj, 
                                                      cl_weights[w], 
                                                      del_init_stdp])
                            w += 1 
                        else:
                            conn_stdp_list[i].append([ii,
                                                      jj, 
                                                      wei_init_stdp, 
                                                      del_init_stdp]) 
        if use_old_weights == False or save == True:
            np.save('output_files/conn_stdp_list.npy', conn_stdp_list)
    else:    
        conn_stdp_list = np.load('output_files/conn_stdp_list.npy')

    
    ## Output Layer Inhibitory Connection List
    if randomness == True:    # if True:  calculate conn_stdp_list (randomly) new
                              # uf False: load previously saved conn_stdp_list
        conn_output_inh = [[] for i in range(n_cl) for j in range(n_cl) if i!=j]
        c = 0
        for i in range(n_cl):
            for j in range(n_cl):
                if i != j:
                    for ii in range(n_pop):
                        for jj in range(n_pop):
                            if prob_output_inh > np.random.rand():
                                conn_output_inh[c].append([ii,
                                                           jj,
                                                           wei_cls_inh,
                                                           del_cls_inh])
                    c += 1
        if save == True:
            np.save("output_files/conn_output_inh.npy",conn_output_inh) 
    else:
        conn_output_inh = np.load("output_files/conn_output_inh.npy")

    

    ## Spike Source to Encoding Layer
    p.Projection(spike_source, enc_layer,
                 p.FromListConnector(conn_inp_enc))
    ## Encoding Layer to Filtering Layer
    p.Projection(enc_layer, filt_layer,
                 p.OneToOneConnector(weights=wei_enc_filt,
                                     delays=del_enc_filt))
    ## Filtering Layer Inhibitory
    p.Projection(filt_layer, filt_layer,
                 p.FromListConnector(conn_filt_inh),
                 target="inhibitory")

    ## STDP Connection between Filtering Layer and Output Layer
    timing_rule = p.SpikePairRule(tau_plus=tau_pl, 
                                  tau_minus=tau_min)
    weight_rule = p.AdditiveWeightDependence(w_max=stdp_w_max, 
                                             w_min=stdp_w_min, 
                                             A_plus=stdp_A_pl, 
                                             A_minus=stdp_A_min)
    stdp_model = p.STDPMechanism(timing_dependence=timing_rule, 
                                 weight_dependence=weight_rule)
    # STDP connection
    stdp_proj = []
    for j in range(n_cl):
        stdp_proj.append(
            p.Projection(filt_layer,out_layer_exc[j], 
                   p.FromListConnector(conn_stdp_list[j]), 
                   synapse_dynamics = p.SynapseDynamics(slow=stdp_model)))

    ## Connection between Output Layer neurons
    c = 0
    for i in range(n_cl):
        p.Projection(out_layer_exc[i], out_layer_inh[i], 
                     p.OneToOneConnector(weights=wei_cls_exc,
                                         delays=del_cls_exc))
        iter_array=[j for j in range(n_cl) if j!=i]
        for j in iter_array:
            p.Projection(out_layer_exc[i], out_layer_exc[j],
                         p.FromListConnector(conn_output_inh[c]),
                                             target="inhibitory")
            c += 1

    ## Spike Source Array to Output
    for i in range(n_cl):
        p.Projection(out_spike_source[i], 
                     out_layer_exc[i], 
                     p.AllToAllConnector(weights=wei_source_outp,
                                         delays=del_source_outp))
        iter_array = [j for j in range(n_cl) if j != i]
        for j in iter_array:
                p.Projection(out_spike_source[i],
                             out_layer_exc[j],
                             p.AllToAllConnector(weights=wei_source_outp,
                                                 delays=del_source_outp),
                                                 target="inhibitory")
    #for i in range(n_cl):
    #    p.Projection(out_spike_source[i], out_layer_exc[i], p.AllToAllConnector\
    #        (weights=wei_source_outp, delays=del_source_outp))
    #    p.Projection(out_spike_source[i], out_layer_exc[1-i], p.AllToAllConnector\
    #        (weights=wei_source_outp, delays=del_source_outp),target="inhibitory")

    ## Noisy poisson connection to encoding layer
    if randomness == True:    # if True:  connect noise to network
                              # if False: don't use noise in network
        p.Projection(poisson_input, enc_layer, 
                     p.FixedProbabilityConnector(p_connect=prob_noise_poi_conn, 
                                                 weights=wei_noise_poi, 
                                                 delays=del_noise_poi))
                
    ############################################################################
    ## Simulation
    ############################################################################
    p.run(SIM_TIME)

    Enc_Spikes = enc_layer.getSpikes()
    Filt_Exc_Spikes = filt_layer.getSpikes()

    Out_Spikes = [[] for i in range(n_cl)]
    for i in range(n_cl):
        Out_Spikes[i] = out_layer_exc[i].getSpikes()

    wei = []
    for i in range(n_cl):
        ww = stdp_proj[i].getWeights()
        if save == True:
            np.save("output_files/stdp_weights{}".format(i), ww)
        wei.append(ww)

    p.end()
    ############################################################################
    ## Plot
    ############################################################################
    ## Plot 1: Encoding Layer Raster Plot
    if 0:
        pylab.figure()
        pylab.xlabel('Time (ms)')
        pylab.ylabel('Neuron ID')
        pylab.title('Encoding Layer Raster Plot')
        pylab.hold(True)
        pylab.plot([i[1] for i in Enc_Spikes], [i[0] for i in Enc_Spikes], ".b")
        pylab.hold(False)
        #pylab.axis([-10,c*SIM_TIME+100,-1,numInp+numOut+numInp+3])
        pylab.show()

    ## Plot 2-1: Filtering Layer Raster Plot
    if 0:
        pylab.figure()
        pylab.xlabel('Time (ms)')
        pylab.ylabel('Neuron ID')
        pylab.title('Filtering Layer Raster Plot')
        pylab.plot([i[1] for i in Filt_Exc_Spikes], 
                   [i[0] for i in Filt_Exc_Spikes], ".b")
        #pylab.axis([-10,c*SIM_TIME+100,-1,numInp+numOut+numInp+3])
        pylab.show()

    ## Plot 2-2: Filtering Layer Layer Raster Plot
    if 0: 
        pylab.figure()
        pylab.xlabel('Time (ms)')
        pylab.ylabel('Neuron ID')
        pylab.title('Filtering Layer Layer Raster Plot')
        pylab.hold(True)
        pylab.plot([i[1] for i in Filt_Exc_Spikes], 
                   [i[0] for i in Filt_Exc_Spikes], ".b")
        time_ind=[i*time_int_trials for i in range(len(outputs))]
        for i in range(len(time_ind)):
            pylab.plot([time_ind[i],time_ind[i]],[0,2000],"r")
        pylab.hold(False)
        #pylab.axis([-10,c*SIM_TIME+100,-1,numInp+numOut+numInp+3])
        pylab.show()


    ## Plot 3-1: Output Layer Raster Plot
    if 0:
        pylab.figure()
        pylab.xlabel('Time (ms)')
        pylab.ylabel('Neuron')
        pylab.title('Output Layer Raster Plot')
        pylab.hold(True)
        c=0
        for array in Out_Spikes:
            pylab.plot([i[1] for i in array], [i[0]+c for i in array], ".b")
            c+=0.2
        pylab.hold(False)
        pylab.axis([-10,SIM_TIME+100,-1,n_pop+3])
        pylab.show()

    ## Plot 4: STDP WEIGHTS
    if 1:
        pylab.figure()
        pylab.xlabel('Weight ID')
        pylab.ylabel('Weight Value')
        pylab.title('STDP weights at the end')
        #pylab.title('STDP weights at the end' + ' (trail_num=' + str(trial_num) + ')')
        pylab.hold(True)
        for i in range(n_cl):
            pylab.plot(wei[i])
        pylab.hold(False)
        pylab.axis([-10,n_pop*n_feature*n_pop*0.5+10,-stdp_w_max,2*stdp_w_max])
        str_legend=["To Cl {}".format(i+1) for i in range(n_cl)]
        pylab.legend(str_legend)
        #pylab.show()
        fname = 'plots/weights_1.png'
        while True:
            if os.path.isfile(fname):    # if file already exists
                new_num =  int(fname.split('.')[0].split('_')[1]) + 1
                fname = fname.split('_')[0] + '_' +str(new_num) + '.png'
    #            if len(fname) == 19:
    #                new_num =  int(fname.split('.')[0][-1]) + 1
    #                fname = fname.split('.')[0][:-1] + str(new_num) + '.png'
    #            elif len(fname) == 20:
    #                new_num =  int(fname.split('.')[0][-2:]) + 1
    #                fname = fname.split('.')[0][:-2] + str(new_num) + '.png'
    #            else:
    #                new_num =  int(fname.split('.')[0][-3:]) + 1
    #                fname = fname.split('.')[0][:-3] + str(new_num) + '.png'
            else:
                pylab.savefig(fname)
                break
                

                


        #pylab.figure()
        #pylab.xlabel('Weight ID')
        #pylab.ylabel('Weight Value')
        #pylab.title('STDP weights at the end')
        #pylab.hold(True)
        #pylab.plot(wei[0], "b")
        #pylab.plot(wei[1], "g")
        #pylab.hold(False)
        #pylab.axis([-10, n_pop * n_feature * n_pop * 0.5 + 10, 
        #            -stdp_w_max, 2 * stdp_w_max])
        #pylab.legend(['To Cl 1','To Cl 2'])
        #pylab.show()

    ## Plot 5: Spike Source Spiking Times
    if 0:
        pylab.figure()
        pylab.hold(True)
        pylab.plot(out_spike_times[0],
                   [1 for i in range(len(out_spike_times[0]))],"x")
        pylab.plot(out_spike_times[1],
                   [1.05 for i in range(len(out_spike_times[1]))],"x")
        pylab.hold(False)
        pylab.title("Spike Source Spiking Times")
        pylab.axis([-100,SIM_TIME+100,-2,3])
        pylab.show()

        

    ## Calculate spiking activity of each neuron to each class inputs
    sum_filt=[[0 for i in range(n_feature*n_pop)] for j in range(n_cl)]
    sum_filt=np.array(sum_filt)

    for i in range(n_trials):
        t_st = i * time_int_trials
        t_end = t_st + time_int_trials
        cl = outputs[i]
        for n,t in Filt_Exc_Spikes:
            if t >= t_st and t < t_end:
                sum_filt[int(cl),int(n)] = sum_filt[int(cl), int(n)] + 1


    a4=sum_filt[0]
    b4=sum_filt[1]

    thr=20

    diff_vec=np.abs(a4 - b4)
    diff_thr=[i if i>thr else 0. for i in diff_vec]
    diff_ind=[i for i in range(len(diff_thr)) if diff_thr[i]!=0]
    if save == True:
        np.save("output_files/diff_ind_filt",diff_ind)

    diff2 = a4 - b4
    diff_thr2=[i if i > thr or i <- thr else 0. for i in diff2]
    diff_ind2=[i for i in range(len(diff_thr2)) if diff_thr2[i] != 0]
    if save == True:
        np.save("output_files/diff_ind_filt2",diff_ind2)
        np.save("output_files/diff_thr2",diff_thr2)

    ## Plot 6: Total Spiking Activity of Neurons at Decomposition Layer for Each Class
    if 0:
        a4=sum_filt[0]
        b4=sum_filt[1]
        pylab.figure()
        pylab.hold(True)
        pylab.plot(a4,"b")
        pylab.plot(b4,"r")
        pylab.xlabel('Neuron ID')
        pylab.ylabel('Total Firing Rates Through Trials')
        pylab.title("Total Spiking Activity of Neurons at Decomposition Layer ", 
                    "for Each Class")
        pylab.hold(False)
        pylab.legend(["Activity to AN1","Activity to AN2"])
        pylab.show()
Пример #22
0
# +-------------------------------------------------------------------+

# Record neurons' potentials
pre_pop.record(['v', 'spikes'])
post_pop.record(['v', 'spikes'])

# Run simulation
sim.run(simtime)

print("Weights:{}".format(plastic_projection.get('weight', 'list')))

pre_spikes = pre_pop.get_data('spikes')
post_spikes = post_pop.get_data('spikes')

Figure(
    # raster plot of the presynaptic neuron spike times
    Panel(pre_spikes.segments[0].spiketrains,
          yticks=True,
          markersize=0.2,
          xlim=(0, simtime)),
    Panel(post_spikes.segments[0].spiketrains,
          yticks=True,
          markersize=0.2,
          xlim=(0, simtime)),
    title="stdp example curr",
    annotations="Simulated with {}".format(sim.name()))
plt.show()

# End simulation on SpiNNaker
sim.end()
Пример #23
0
def lancement_sim(cellSourceSpikes,
                  max_time=800000,
                  path="default",
                  TIME_STEP=TIME_STEP,
                  input_n=input_n,
                  nb_neuron_int=nb_neuron_int,
                  nb_neuron_out=nb_neuron_out,
                  delay=delay,
                  p_conn_in_int=p_conn_in_int,
                  p_conn_int_out=p_conn_int_out,
                  a_minus=0.6,
                  a_plus=0.6,
                  tau_minus=12.0,
                  tau_plus=10.0,
                  v_tresh=10.0):

    simulator = 'spinnaker'
    sim.setup(timestep=TIME_STEP, min_delay=delay, max_delay=delay * 2)
    randoms = np.random.rand(100, 1)

    lif_curr_exp_params = {
        'cm': 1.0,  # The capacitance of the LIF neuron in nano-Farads
        'tau_m': 20.0,  # The time-constant of the RC circuit, in milliseconds
        'tau_refrac': 5.0,  # The refractory period, in milliseconds
        'v_reset':
        -65.0,  # The voltage to set the neuron at immediately after a spike
        'v_rest': -65.0,  # The ambient rest voltage of the neuron
        'v_thresh':
        -(v_tresh),  # The threshold voltage at which the neuron will spike
        'tau_syn_E': 5.0,  # The excitatory input current decay time-constant
        'tau_syn_I': 5.0,  # The inhibitory input current decay time-constant
        'i_offset': 0.0,  # A base input current to add each timestep
    }
    Input = sim.Population(input_n,
                           sim.SpikeSourceArray(spike_times=cellSourceSpikes),
                           label="Input")
    Input.record("spikes")

    LIF_Intermediate = sim.IF_curr_exp(**lif_curr_exp_params)
    Intermediate = sim.Population(nb_neuron_int,
                                  LIF_Intermediate,
                                  label="Intermediate")
    Intermediate.record(("spikes", "v"))

    LIF_Output = sim.IF_curr_exp(**lif_curr_exp_params)
    Output = sim.Population(nb_neuron_out, LIF_Output, label="Output")
    Output.record(("spikes", "v"))

    LIF_delayer = sim.IF_curr_exp(**lif_curr_exp_params)
    Delay_n = sim.Population(1, LIF_delayer, label="Delay")
    Delay_n.record(("spikes", "v"))

    python_rng = NumpyRNG(seed=98497627)

    delay = delay  # (ms) synaptic time delay

    # Définition du fonctionnement de la stdp
    stdp_proj = sim.STDPMechanism(
        timing_dependence=sim.SpikePairRule(tau_plus=tau_plus,
                                            tau_minus=tau_minus,
                                            A_plus=a_plus,
                                            A_minus=a_minus),
        weight_dependence=sim.AdditiveWeightDependence(w_min=0.1, w_max=6),
        weight=RandomDistribution('normal', (3, 2.9), rng=python_rng),
        delay=delay)

    Conn_input_inter = sim.Projection(
        Input,
        Intermediate,
        connector=sim.FixedProbabilityConnector(p_conn_in_int,
                                                allow_self_connections=False),
        # synapse type set avec la définition de la stdp pour l'aprentsissage
        synapse_type=stdp_proj,
        receptor_type="excitatory",
        label="Connection input to intermediate")

    # second projection with stdp
    Conn_inter_output = sim.Projection(
        Intermediate,
        Output,  # pre and post population
        connector=sim.FixedProbabilityConnector(p_conn_int_out,
                                                allow_self_connections=False),
        synapse_type=stdp_proj,
        receptor_type="excitatory",
        label="Connection intermediate to output")

    FixedInhibitory_WTA = sim.StaticSynapse(weight=6)
    WTA_INT = sim.Projection(
        Intermediate,
        Intermediate,
        connector=sim.AllToAllConnector(allow_self_connections=False),
        synapse_type=FixedInhibitory_WTA,
        receptor_type="inhibitory",
        label="Connection WTA")

    WTA_OUT = sim.Projection(
        Output,
        Output,
        connector=sim.AllToAllConnector(allow_self_connections=False),
        synapse_type=FixedInhibitory_WTA,
        receptor_type="inhibitory",
        label="Connection WTA")

    FixedInhibitory_delayer = sim.StaticSynapse(weight=2)
    Delay_out = sim.Projection(
        Delay_n,
        Output,
        connector=sim.AllToAllConnector(allow_self_connections=False),
        synapse_type=FixedInhibitory_delayer,
        receptor_type="inhibitory",
        label="Connection WTA")

    Delay_inter = sim.Projection(
        Intermediate,
        Delay_n,
        connector=sim.AllToAllConnector(allow_self_connections=False),
        synapse_type=FixedInhibitory_delayer,
        receptor_type="inhibitory",
        label="Connection WTA")

    sim.set_number_of_neurons_per_core(sim.IF_curr_exp, 255)

    # Définition des callbacks pour la récupération de l'écart-type sur les connexions entrée-intermédiaire, intermédiaire-sortie
    weight_recorder1 = WeightRecorder(sampling_interval=1000.0,
                                      projection=Conn_input_inter)
    weight_recorder2 = WeightRecorder(sampling_interval=1000.0,
                                      projection=Conn_inter_output)

    simtime = ceil(max_time)

    # Initialisation des tableaux pour la récupération des poids
    weights_int = []
    weights_out = []

    try:
        sim.run(simtime, callbacks=[weight_recorder1, weight_recorder2])
        neo = Output.get_data(variables=["spikes", "v"])
        spikes = neo.segments[0].spiketrains
        #print(spikes)
        v = neo.segments[0].filter(name='v')[0]
        weights_int = Conn_input_inter.get(["weight"], format="list")

        neo_in = Input.get_data(variables=["spikes"])
        spikes_in = neo_in.segments[0].spiketrains
        #print(spikes_in)

        neo_intermediate = Intermediate.get_data(variables=["spikes", "v"])
        spikes_intermediate = neo_intermediate.segments[0].spiketrains
        #print(spikes_intermediate)
        v_intermediate = neo_intermediate.segments[0].filter(name='v')[0]
        #print(v_intermediate)
        weights_out = Conn_inter_output.get(["weight"], format="list")

        sim.reset()
        sim.end()
    except:
        v = 0
        spikes = 0

    if (isinstance(spikes, list) and isinstance(v, AnalogSignal)):
        # Récupération des écart-types
        standard_deviation_out = weight_recorder2.get_standard_deviations()
        standard_deviation_int = weight_recorder1.get_standard_deviations()
        t = np.arange(0., max_time, 1.)

        # Création et sauvegarde des graphs sur les spikes et écart-types
        savePath = "./Generated_data/training/" + path + "/intermediate_layer_standard_deviation.png"
        plt.plot(standard_deviation_int)
        plt.xlabel("callbacks tick (1s)")
        plt.ylabel("standard deviation of the weights( wmax=6, wmin=0.1 )")
        plt.savefig(savePath)
        plt.clf()

        savePath = "./Generated_data/training/" + path + "/output_layer_standard_deviation.png"
        plt.plot(standard_deviation_out)
        plt.xlabel("callbacks tick")
        plt.ylabel("standard deviation ( wmax=6, wmin=0.1 )")
        plt.savefig(savePath)
        plt.clf()

        savePath = "./Generated_data/training/" + path + "/output_layer_membrane_voltage_and_spikes.png"
        plot.Figure(
            # plot voltage for first ([0]) neuron
            plot.Panel(v,
                       ylabel="Membrane potential (mV)",
                       data_labels=[Output.label],
                       yticks=True,
                       xlim=(0, simtime)),
            # plot spikes (or in this case spike)
            plot.Panel(spikes, yticks=True, markersize=5, xlim=(0, simtime)),
            title="Spiking activity of the output layer during training",
            annotations="Simulated with {}".format(sim.name())).save(savePath)

        savePath = "./Generated_data/training/" + path + "/intermediate_layer_membrane_voltage_and_spikes.png"
        plot.Figure(
            # plot voltage for first ([0]) neuron
            plot.Panel(v_intermediate,
                       ylabel="Membrane potential (mV)",
                       data_labels=[Output.label],
                       yticks=True,
                       xlim=(0, simtime)),
            # plot spikes (or in this case spike)
            plot.Panel(spikes_intermediate,
                       yticks=True,
                       markersize=5,
                       xlim=(0, simtime)),
            title="Spiking activity of the intermediate layer during training",
            annotations="Simulated with {}".format(sim.name())).save(savePath)

        return v, spikes, weights_int, weights_out

    else:
        print(
            "simulation failed with parmaters parameters : (l'affichage des paramètres ayant causés le disfonctionnement de la simulation sera traitée à une date ultérieur, merci!)"
        )
        return 0, 0, 0, 0