def d3d(tmpdir,dic): #initialize a model rpath = str(tmpdir) dic.update({'rpath':rpath + '/20181001.00/'}) # use tmpdir for running the model b = pyPoseidon.model(**dic) b.execute() # Cast #read the info from the first run with open(rpath+'/20181001.00/d3d_model.json', 'rb') as f: info = pd.read_json(f,lines=True).T info[info.isnull().values] = None info = info.to_dict()[0] info.update({'path':rpath}) # The path of the project #creating a time sequence of the runs start_date = pd.to_datetime('2018-10-1 0:0:0') end_date = pd.to_datetime('2018-10-1 12:0:0') date_list = pd.date_range(start_date,end_date, freq='12H') #append to dic info.update({'start_date':start_date,'end_date':end_date, 'dates' : date_list}) #creating a sequence of folder to store the runs. In this case we name them after the date attribute. #NOTE that the first folder is the fisrt run already perfomed!! folders = [datetime.datetime.strftime(x, '%Y%m%d.%H') for x in date_list] info.update({'folders':folders}) #set meteo files meteo = [] for date in date_list: end_date= pd.to_datetime(date) + pd.to_timedelta(info['time_frame']) end_date = end_date.strftime(format='%Y-%m-%d %H:%M:%S') dr = pd.date_range(date, end_date, freq='12H') dur = [(DATA_DIR / ('uvp_' + datetime.datetime.strftime(x, '%Y%m%d%H') + '.grib')).as_posix() for x in dr] meteo.append(dur) info.update({'meteo_source':meteo}) print(meteo) info.update({'time_frame' : len(folders)*[info['time_frame']]}) h = cast.cast(**info) # initialize h.run() # combine output folders = [info['path']+'/'+f for f in info['folders']] res = data.data(folders=folders,solver='d3d') # check single run case2.update({'rpath':rpath + '/combined/'}) a = pyPoseidon.model(**case2) a.execute() out = data.data(**case2) test = True for var in out.Dataset.data_vars: if not out.Dataset[var].equals(res.Dataset[var]): if np.abs(out.Dataset[var].values-res.Dataset[var].values).max() > 1.e-6 : test = False return test
def d3d(tmpdir): #initialize a model rpath = str(tmpdir) + '/d3d/' case.update({'rpath': rpath + '/20181001.00/'}) # use tmpdir for running the model b = pyPoseidon.model(**case) b.execute() #creating a time sequence of the runs start_date = pd.to_datetime('2018-10-1 0:0:0') end_date = pd.to_datetime('2018-10-2 0:0:0') date_list = pd.date_range(start_date, end_date, freq='12H') #creating a sequence of folder to store the runs. In this case we name them after the date attribute. #NOTE that the first folder is the fisrt run already perfomed!! rpaths = [ rpath + datetime.datetime.strftime(x, '%Y%m%d.%H') + '/' for x in date_list ] #set meteo files meteo = [] for date in date_list: end_date = pd.to_datetime(date) + pd.to_timedelta('12H') end_date = end_date.strftime(format='%Y-%m-%d %H:%M:%S') dr = pd.date_range(date, end_date, freq='12H') names = [ 'uvp_' + datetime.datetime.strftime(x, '%Y%m%d%H') + '.grib' for x in dr ] dur = [(DATA_DIR / name).as_posix() for name in names] meteo.append(dur) #set cast for l in range(len(rpaths) - 1): h = cast.cast(solver='d3d', model=b, ppath=rpaths[l], cpath=rpaths[l + 1], meteo=meteo[l + 1], date=date_list[l + 1]) h.set(execute=True) # execute # Run check case - Total duration check.update({'rpath': rpath + 'check/'}) # use tmpdir for running the model c = pyPoseidon.model(**check) c.execute() # COMPARE output = data.data(folders=rpaths, solver='d3d') total = data.data(folders=[rpath + 'check/'], solver='d3d') test = True rb = [] for var in total.Dataset.data_vars: if not total.Dataset[var].equals(output.Dataset[var]): rb.append(var) if np.abs(total.Dataset[var].values - output.Dataset[var].values).max() > 1.e-6: test = False print(rb) return test
def schism(tmpdir): #initialize a model rpath = str(tmpdir) + '/schism/' case.update({'rpath': rpath + '20181001.00/'}) # use tmpdir for running the model b = pyPoseidon.model(**case) b.execute() # run the cast with open(rpath + '20181001.00/schism_model.json', 'rb') as f: info = pd.read_json(f, lines=True).T info[info.isnull().values] = None info = info.to_dict()[0] info.update({'path': rpath}) #creating a time sequence of the runs start_date = pd.to_datetime('2018-10-1 0:0:0') end_date = pd.to_datetime('2018-10-2 0:0:0') date_list = pd.date_range(start_date, end_date, freq='12H') #append to dic info.update({ 'start_date': start_date, 'end_date': end_date, 'dates': date_list }) #creating a sequence of folder to store the runs. In this case we name them after the date attribute. #NOTE that the first folder is the fisrt run already perfomed!! folders = [datetime.datetime.strftime(x, '%Y%m%d.%H') for x in date_list] info.update({'folders': folders}) #creating a sequence of folder from which we read the meteo. meteo = [] for date in date_list: end_date = pd.to_datetime(date) + pd.to_timedelta(info['time_frame']) end_date = end_date.strftime(format='%Y-%m-%d %H:%M:%S') dr = pd.date_range(date, end_date, freq='12H') names = [ 'uvp_' + datetime.datetime.strftime(x, '%Y%m%d%H') + '.grib' for x in dr ] dur = [(DATA_DIR / name).as_posix() for name in names] meteo.append(dur) info.update({'meteo_source': meteo}) info['time_frame'] = len(folders) * [info['time_frame']] #set cast h = cast.cast(**info) # initialize h.run() # Run check case - Total duration check.update({'rpath': rpath + 'check/'}) # use tmpdir for running the model c = pyPoseidon.model(**check) c.execute() # COMPARE folders = [info['path'] + f for f in info['folders']] output = data.data(folders=folders, solver='schism') total = data.data(folders=[rpath + 'check/'], solver='schism') rb = [] for var in total.Dataset.data_vars: if not total.Dataset[var].equals(output.Dataset[var]): rb.append(var) print(rb) # flag = True TODO # for var in rb: # flag = False # mdif = np.abs(total.results.Dataset[var].values - output.results.Dataset[var].values).max() # if mdif < 1.e-14 : # flag = True # print(mdif) if (rb == ['zcor']) or rb == []: return True else: return False
def schism(tmpdir): #initialize a model rpath = str(tmpdir)+'/schism/' case.update({'rpath':rpath+'20181001.00/'}) # use tmpdir for running the model b = pyPoseidon.model(**case) b.execute() #creating a time sequence of the runs start_date = pd.to_datetime('2018-10-1 0:0:0') end_date = pd.to_datetime('2018-10-2 0:0:0') date_list = pd.date_range(start_date,end_date, freq='12H') #creating a sequence of folder to store the runs. In this case we name them after the date attribute. #NOTE that the first folder is the fisrt run already perfomed!! rpaths = [rpath + datetime.datetime.strftime(x, '%Y%m%d.%H') +'/' for x in date_list] #creating a sequence of folder from which we read the meteo. meteo = [] for date in date_list: prev_date= pd.to_datetime(date) - pd.to_timedelta('12H') prev_date = prev_date.strftime(format='%Y-%m-%d %H:%M:%S') dr = pd.date_range(prev_date, date, freq='12H') names = ['uvp_'+ datetime.datetime.strftime(x, '%Y%m%d%H') + '.grib' for x in dr] dur = [ (DATA_DIR / name).as_posix() for name in names ] meteo.append(dur) #set cast for l in range(len(rpaths)-1): h = cast.cast(solver='schism',model=b,ppath=rpaths[l],cpath=rpaths[l+1],meteo=meteo[l+1], date=date_list[l+1]) h.set(execute=True) # execute # Run check case - Total duration check.update({'rpath':rpath+'check/'}) # use tmpdir for running the model # Combine meteo appropriately m1 = pm.meteo(meteo_source=METEO_FILES_2[0],meteo_engine='cfgrib') m2 = pm.meteo(meteo_source=METEO_FILES_2[1],meteo_engine='cfgrib') m3 = pm.meteo(meteo_source=METEO_FILES_2[2],meteo_engine='cfgrib') m4 = pm.meteo(meteo_source=METEO_FILES_2[3],meteo_engine='cfgrib') # extract correct chunk w1 = m1.Dataset.isel(time=slice(0,13)) w2 = m2.Dataset.isel(time=slice(1,13)) # note that we keep the 12 hour from the previous file w3 = m3.Dataset.isel(time=slice(1,13)) w4 = m4.Dataset.isel(time=slice(1,13)) #combine meteo = xr.combine_by_coords([w1,w2,w3,w4],combine_attrs='override') #saving check.update({'meteo_source' : meteo}) c = pyPoseidon.model(**check) c.execute() # COMPARE output = data.data(folders=rpaths,solver='schism') total = data.data(folders=[rpath+'check/'],solver='schism') r = output.Dataset.isel(time=slice(0,36)) rb = [] for var in total.Dataset.data_vars: if not total.Dataset[var].equals(r[var]): rb.append(var) print(rb) # flag = True TODO # for var in rb: # flag = False # mdif = np.abs(total.results.Dataset[var].values - output.results.Dataset[var].values).max() # if mdif < 1.e-14 : # flag = True # print(mdif) if (rb == ['zcor']) or rb==[]: return True else: return False
def schism(tmpdir): #initialize a model rpath = str(tmpdir) + '/schism/' case.update({'rpath': rpath + '20181001.00/'}) # use tmpdir for running the model #creating a time sequence of the runs start_date = pd.to_datetime('2018-10-1 0:0:0') end_date = pd.to_datetime('2018-10-2 0:0:0') date_list = pd.date_range(start_date, end_date, freq='12H') m0 = pm.meteo(meteo_source=METEO_FILES_1, engine='cfgrib') case.update({'meteo_source': m0.Dataset}) b = pyPoseidon.model(**case) b.execute() # run the cast with open(rpath + '20181001.00/schism_model.json', 'rb') as f: info = pd.read_json(f, lines=True).T info[info.isnull().values] = None info = info.to_dict()[0] info.update({'path': rpath}) #append to dic info.update({ 'start_date': start_date, 'end_date': end_date, 'dates': date_list }) #creating a sequence of folder to store the runs. In this case we name them after the date attribute. #NOTE that the first folder is the fisrt run already perfomed!! folders = [datetime.datetime.strftime(x, '%Y%m%d.%H') for x in date_list] info.update({'folders': folders}) #creating a sequence of folder from which we read the meteo. meteo = [m0.Dataset] for date in date_list[1:]: end_date = pd.to_datetime(date) + pd.to_timedelta(info['time_frame']) end_date = end_date.strftime(format='%Y-%m-%d %H:%M:%S') dr = [date - pd.to_timedelta('12H'), date] names = [ 'uvp_' + datetime.datetime.strftime(x, '%Y%m%d%H') + '.grib' for x in dr ] dur = [(DATA_DIR / name).as_posix() for name in names] m1 = pm.meteo(meteo_source=dur[0], engine='cfgrib') m2 = pm.meteo(meteo_source=dur[1], engine='cfgrib') w1 = m1.Dataset.isel(time=slice(12, 13)) w2 = m2.Dataset.isel(time=slice( 1, None)) # note that we keep the 12 hour from the previous file mf = xr.combine_by_coords([w1, w2]) meteo.append(mf) info.update({'meteo_source': meteo}) info['time_frame'] = len(folders) * [info['time_frame']] #set cast h = cast.cast(**info) # initialize h.run() # Run check case - Total duration check.update({'rpath': rpath + 'check/'}) # use tmpdir for running the model # Combine meteo appropriately m1 = pm.meteo(meteo_source=METEO_FILES_2[0], engine='cfgrib') m2 = pm.meteo(meteo_source=METEO_FILES_2[1], engine='cfgrib') m3 = pm.meteo(meteo_source=METEO_FILES_2[2], engine='cfgrib') m4 = pm.meteo(meteo_source=METEO_FILES_2[3], engine='cfgrib') # extract correct chunk w1 = m1.Dataset.isel(time=slice(0, 13)) w2 = m2.Dataset.isel(time=slice( 1, 13)) # note that we keep the 12 hour from the previous file w3 = m3.Dataset.isel(time=slice(1, 13)) w4 = m4.Dataset.isel(time=slice(1, 13)) #combine meteo = xr.combine_by_coords([w1, w2, w3, w4]) #saving check.update({'meteo_source': meteo}) c = pyPoseidon.model(**check) c.execute() # COMPARE folders = [info['path'] + f for f in info['folders']] output = data.data(folders=folders, solver='schism') total = data.data(folders=[rpath + 'check/'], solver='schism') r = output.Dataset.isel(time=slice(0, 36)) rb = [] for var in total.Dataset.data_vars: if not total.Dataset[var].equals(r[var]): rb.append(var) print(rb) # flag = True TODO # for var in rb: # flag = False # mdif = np.abs(total.results.Dataset[var].values - output.results.Dataset[var].values).max() # if mdif < 1.e-14 : # flag = True # print(mdif) if (rb == ['zcor']) or rb == []: return True else: return False