Пример #1
0
if __name__ == "__main__":
    import time
    t0 = time.time()
    ## Artificial 1dim random time series
    shape = (2000, )
    ts = np.random.random(shape)

    ## Computing measure by binning
    pars_ret, nbins = {'l': 8, 'center': 0, 'excluded': False}, 5
    windret = WindowsRetriever(shape, pars_ret)
    binsdesc = NBinsHistogramDesc(nbins)
    cat_ts = binsdesc.set_global_info(ts, transform=True)

    gret = RetrieverManager(windret)
    feats_ret = FeaturesManager(ImplicitFeatures(cat_ts, out_type='ndarray',
                                                 descriptormodel=binsdesc),
                                maps_vals_i=cat_ts)

#    feats_ret = FeaturesManager(cat_ts, descriptormodels=binsdesc,
#                                maps_vals_i=cat_ts)

    spdesc = SpatialDescriptorModel(gret, feats_ret)
    net = spdesc.compute()

    # Compare with the expected result
    try:
        np.testing.assert_allclose(net.sum(1)/net.sum(), 1./nbins, atol=0.03)
    except AssertionError as e:
        print(e)
    print time.time()-t0
Пример #2
0
    # Interpolate to points
    t_int = np.arange(0, np.floor(t_s[-1]+0.5))
    nt_new = len(t_int)
    # Retrievers
    ret0 = KRetriever(locs=t_s.reshape((n_t, 1)), info_ret=1,
                      autolocs=t_int.reshape((len(t_int), 1)), ifdistance=True)
    ret1 = CircRetriever(locs=t_s.reshape((n_t, 1)), info_ret=.9,
                         autolocs=t_int.reshape((len(t_int), 1)),
                         ifdistance=True)

    ## Easy interpolation using scipy
    vals_nn = griddata(t_s.reshape((n_t, 1)), values.reshape((n_t, 1)),
                       t_int.reshape((len(t_int), 1)), fill_value=0.).ravel()

    ## Using pySpatialTools framework
    interpolator = Interpolator('null', {}, 'null', {})
    feats = ImplicitFeatures(values.reshape((len(values), 1)),
                             descriptormodel=interpolator, out_type='ndarray')
    feats_ret = FeaturesManager(feats, maps_vals_i=('matrix', nt_new, nt_new))
    interpolation = SpatialDescriptorModel(ret0, feats_ret)
    vals_nn_new = interpolation.compute().ravel()

    ## Plot interpolation
    plt.plot(t_s, values, label='original')
    plt.plot(range(nt_new), vals_nn, label='scipy interpolation')
    plt.plot(range(nt_new), vals_nn_new, label='pst 1-nn interpolation')
    legend = plt.legend(loc='upper right', shadow=True)
    plt.show()

#    interpolator = Interpolator('gaussian', pars_w[1], f_dens1, pars_d)
    def relative_descriptors(self, i, neighs_info, desc_i, desc_neigh, vals_i):
        "General default relative descriptors."
        descriptors = desc_i[:]
        ind_life = desc_i.ravel().astype(bool)
        ind_dead = np.logical_not(desc_i.ravel())
        descriptors[ind_life] = np.logical_or(desc_neigh[ind_life] == 2,
                                              desc_neigh[ind_life] == 3)
        descriptors[ind_dead] = desc_neigh[ind_dead] == 3

        return descriptors


if __name__ == "__main__":
    ## Initial variables
    nx, ny, nt = 10, 10, 100
    pars_ret = {'l': 3, 'center': 0, 'excluded': True}
    ## Initialization
    initial_state = np.random.randint(0, 2, nx*ny)
    windret = WindowsRetriever((nx, ny), pars_ret=pars_ret)
    gret = RetrieverManager(windret)
    conw_ev = ConwayEvolution()
    ## Evolution
    state = initial_state[:]
    m_vals_i = create_mapper_vals_i(('matrix', len(state), len(state)))
    for i in range(nt):
        state =\
            FeaturesManager(ImplicitFeatures(state, descriptormodel=conw_ev),
                            maps_vals_i=m_vals_i)
        spdesc = SpatialDescriptorModel(gret, state)
        state = spdesc.compute()[:, :, 0].astype(int)
Пример #4
0
    # Retrievers
    perturbations = JitterLocations(0.001, 250)
    ret0 = KRetriever(locs=n_points, info_ret=nclass*nneighs,
                      autolocs=points, ifdistance=False,
                      perturbations=perturbations)
    ret1 = CircRetriever(locs=n_points, info_ret=0.025,
                         autolocs=points, ifdistance=False,
                         perturbations=perturbations)
    ############### WARNING: TOTEST (not shape)
    # Features and descriptor
    desc = CountDescriptor()
    names = [str(e) for e in range(nclass)]
    feats = ImplicitFeatures(classes, descriptormodel=desc,  # names=names,
                             perturbations=perturbations)
    feats_ret = FeaturesManager(feats, maps_vals_i=np.zeros((len(points), 1)))
    measurer = SpatialDescriptorModel(ret0, feats_ret)
    measure = measurer.compute()

    ###########################################################################
    ######### Statistical tests
    ## Detect which one is the more stable under jitter and permutation
    new_points = np.vstack([n_points, points])
    new_classes = np.hstack([classes, np.ones(len(points))*nclass])

    # Perturbations
    jitter_perturbs = JitterLocations(0.001, 250)
    perm_perturbs = PermutationPerturbation((len(new_points), 250))

    ## 1st test (jitter)  [TODO: error heterogeneous shape retrievers]
    # a) using K-neighs neighborhood
    ret0 = KRetriever(locs=new_points[:], info_ret=nclass*nneighs,
def test():
    n, nx, ny = 100, 100, 100
    m, rei = 3, 5
    locs = np.random.random((n, 2))*10
    ## Retrievers management
    ret0 = KRetriever(locs, 3, ifdistance=True)
    ret1 = CircRetriever(locs, .3, ifdistance=True)
    #countdesc = CountDescriptor()

    ## Other functions
    def map_indices(s, i):
        if s._pos_inputs is not None:
            return s._pos_inputs.start + s._pos_inputs.step*i
        else:
            return i

    def halting_f(signum, frame):
        raise Exception("Not error time.")

    ## Random exploration functions
    def random_pos_space_exploration(pos_possibles):
        selected, indices = [], []
        for i in range(len(pos_possibles)):
            sel, ind = random_pos_exploration(pos_possibles[i])
            selected.append(sel)
            indices.append(ind)
        return selected, indices

    def random_pos_exploration(possibles):
        ## Selection
        i_pos = np.random.randint(0, len(possibles))
        return possibles[i_pos], i_pos

    ## Impossibles
    def impossible_instantiation(selected, p, ret, feat):
        i_ret, sel, agg, pert = p
        p_ind, m_ind, n_desc, i_feat = selected
        checker = False

        ## Not implemented perturbation over explicit features
        if pert is not None:
            if type(feat) == np.ndarray:
                if len(feat.shape) == 3:
                    checker = True
            elif isinstance(feat, ExplicitFeatures):
                checker = True
            elif isinstance(feat, FeaturesManager):
                check_aux = []
                for i in range(len(feat.features)):
                    check_aux.append(isinstance(feat.features[i],
                                                ExplicitFeatures))
                checker = any(check_aux)
        return checker

    def compulsary_instantiation_errors(selected, p, ret, feat):
        i_ret, sel, agg, pert = p
        p_ind, m_ind, n_desc, i_feat = selected
        checker = False

        ## Cases
        if p_ind == []:
            checker = True

        ## Compulsary failing instantiation
        if not checker:
            return
        try:
            boolean = False
            SpatialDescriptorModel(retrievers=ret, featurers=feat,
                                   mapselector_spdescriptor=sel,
                                   pos_inputs=p_ind, map_indices=m_ind,
                                   perturbations=pert, aggregations=agg,
                                   name_desc=n_desc)
            boolean = True
        except:
            if boolean:
                raise Exception("It has to halt here.")
        return checker

    def test_methods(methods, input_):
        """Test proper methods output for selectors indications."""
#        print methods, input_
        assert(len(methods) == 3)
        assert(methods[0] in [True, False])

        if methods[1] is None:
            assert(methods[2] is None)
        elif type(input_) == int:
            assert(type(methods[1]) == tuple)
            assert(type(methods[2]) == tuple)
            assert(len(methods[1]) == 2)
            assert(len(methods[2]) == 3)
            assert(all([len(e) == 2 for e in methods[2]]))
            assert(all([type(e) == tuple for e in methods[2]]))
        else:
            assert(type(input_) == list)
            assert(type(methods[1]) == list)
            assert(type(methods[2]) == list)
            assert(len(methods[1]) == len(input_))
            assert(len(methods[2]) == len(input_))
            for i in range(len(methods[1])):
                assert(type(methods[1][i]) == tuple)
                assert(type(methods[2][i]) == tuple)
                assert(len(methods[1][i]) == 2)
                assert(len(methods[2][i]) == 3)
                assert(all([len(e) == 2 for e in methods[2][i]]))
                assert(all([type(e) == tuple for e in methods[2][i]]))

    ###########################################################################
    ###########################################################################
    ######## Testing aggregations preparation
    ## Testing all possible aggregation_in
    agg_f_ret = None
    desc_in, desc_out = AvgDescriptor(), AvgDescriptor()
    feats = ImplicitFeatures(np.random.random((100, 10)),
                             descriptormodel=AvgDescriptor())

    agg_in = agg_f_ret, desc_in, {}, {}, desc_out
    res = _parse_aggregation_feat(agg_in, feats)
    assert(type(res) == tuple)
    assert(len(res) == 5)
    agg_in = agg_f_ret, desc_in, {}, {}
    res = _parse_aggregation_feat(agg_in, feats)
    assert(type(res) == tuple)
    assert(len(res) == 5)
    agg_in = agg_f_ret, {}, {}
    res = _parse_aggregation_feat(agg_in, feats)
    assert(type(res) == tuple)
    assert(len(res) == 5)
    agg_in = agg_f_ret, desc_in, desc_out
    res = _parse_aggregation_feat(agg_in, feats)
    assert(type(res) == tuple)
    assert(len(res) == 5)
    agg_in = (agg_f_ret, )
    res = _parse_aggregation_feat(agg_in, feats)
    assert(type(res) == tuple)
    assert(len(res) == 5)

    # Creation standard aggregation_info
    disc = GridSpatialDisc((5, 5), xlim=(0, 1), ylim=(0, 1))
    locs = np.random.random((100, 2))
    regs = disc.discretize(locs)
    disc_info = locs, regs, disc

    retriever_in = (KRetriever, {'info_ret': 4})
    retriever_out = (KRetriever, {'info_ret': 4})
    aggregating = avgregionlocs_outretriever, (avgregionlocs_outretriever, )

    aggregation_info = disc_info, retriever_in, retriever_out, aggregating
    # Creation of aggregation objects
    aggretriever = create_aggretriever(aggregation_info)
    assert(isinstance(aggretriever, BaseRetriever))
    aggfeatures = create_aggfeatures(aggregation_info, feats)
    assert(isinstance(aggfeatures, BaseFeatures))

    ###########################################################################
    ###########################################################################
    ######## Testing instantiation spdesc
    ## TODO: bool_input_idx=False

    # Aggregation
    disc = GridSpatialDisc((5, 5), xlim=(0, 1), ylim=(0, 1))
    retriever_in = (KRetriever, {'info_ret': 4})
    retriever_out = (KRetriever, {'info_ret': 4})
    aggregating = avgregionlocs_outretriever, (avgregionlocs_outretriever, )
    aggregation_info = disc, retriever_in, retriever_out, aggregating

    # Locs and retrievers
    n_in, n_out = 50, 50  # TODO: Different sizes and easy manage
    locs_input = np.random.random((n_in, 2))
    locs1 = np.random.random((n_out, 2))
    locs2 = np.random.random((n_out, 2))

    # Features
    aggfeats = np.random.random((n_out, m, rei))
    featsarr0 = np.random.random((n_out, m))
    featsarr1 = np.random.random((n_out, m))
    featsarr2 = np.vstack([np.random.randint(0, 10, n_out)
                           for i in range(m)]).T

    def new_retrievers_creation():
        ret0 = KRetriever(locs1, autolocs=locs_input, info_ret=3,
                          bool_input_idx=True)
        ret1 = [ret0, CircRetriever(locs2, info_ret=0.1, autolocs=locs_input,
                                    bool_input_idx=True)]
        ret2 = RetrieverManager(ret0)
        pos_rets = [ret0, ret1, ret2]
        return pos_rets

    pos_rets = range(3)

    ## Possible feats
    def new_features_creation():
        feats0 = ExplicitFeatures(aggfeats)
        feats1 = ImplicitFeatures(featsarr0)
        feats2 = FeaturesManager(ExplicitFeatures(aggfeats))

        pos_feats = [feats0, feats1, aggfeats, featsarr0, feats2]
        return pos_feats

    pos_feats = range(5)

    # Selectors
    arrayselector0 = np.zeros((n_in, 8))
    arrayselector1 = np.zeros((n_in, 2)), np.zeros((n_in, 6))
    arrayselector2 = np.zeros((n_in, 2)), tuple([np.zeros((n_in, 2))]*3)
    functselector0 = lambda idx: ((0, 0), ((0, 0), (0, 0), (0, 0)))
    functselector1 = lambda idx: (0, 0), lambda idx: ((0, 0), (0, 0), (0, 0))
    tupleselector0 = (0, 0), (0, 0, 0, 0, 0, 0)
    tupleselector1 = (0, 0, 0, 0, 0, 0, 0, 0)
    tupleselector2 = (0, 0), ((0, 0), (0, 0), (0, 0))

    listselector = None
    selobj = Sp_DescriptorSelector(*arrayselector1)
    pos_selectors = [None, arrayselector0, arrayselector1, arrayselector2,
                     functselector0, functselector1,
                     tupleselector0, tupleselector1, tupleselector2,
                     Sp_DescriptorSelector(arrayselector0)]
    pos_agg = [None]

    ## Perturbations
    reindices0 = np.arange(n_out)
    reindices = np.vstack([reindices0]+[np.random.permutation(n_out)
                                        for i in range(rei-1)]).T
    perturbation = PermutationPerturbation(reindices)
    pos_pert = [None, perturbation]

    ## Random exploration
    pos_loop_ind = [None, 20, (0, n_in, 1), slice(0, n_in, 1), []]
    pos_loop_mapin = [None, map_indices]
    pos_name_desc = [None, '', 'random_desc']
    # Possible feats
    # Random exploration possibilities
    pos_random = [pos_loop_ind, pos_loop_mapin, pos_name_desc, pos_feats]

    possibilities = [pos_rets, pos_selectors, pos_agg, pos_pert]

    s = 0
    for p in product(*possibilities):
        i_ret, sel, agg, pert = p
        ## Random exploration of parameters
        selected, indices = random_pos_space_exploration(pos_random)
        p_ind, m_ind, n_desc, i_feat = selected
        ## Classes renewal
        rets_cand = new_retrievers_creation()
        feats_cand = new_features_creation()
        # Retrievers
        ret = rets_cand[i_ret]
        feat = feats_cand[i_feat]

#        print indices
#        print p, selected
        ## Impossible cases
        checker1 = impossible_instantiation(selected, p, ret, feat)
        checker2 = compulsary_instantiation_errors(selected, p, ret, feat)
        if checker1 or checker2:
            continue
        ## Testing instantiation
        spdesc = SpatialDescriptorModel(retrievers=ret, featurers=feat,
                                        mapselector_spdescriptor=sel,
                                        pos_inputs=p_ind, map_indices=m_ind,
                                        perturbations=pert, aggregations=agg,
                                        name_desc=n_desc)
#        print s
        #### Function testing
        ## Auxiliar functions
        spdesc.add_perturbations(pert)
        spdesc.set_loop(p_ind, m_ind)
        spdesc._map_indices(spdesc, 0)
        for i in spdesc.iter_indices():
            methods = spdesc._get_methods(i)
            test_methods(methods, i)

        methods = spdesc._get_methods(0)
        test_methods(methods, 0)
        methods = spdesc._get_methods(10)
        test_methods(methods, 10)
        methods = spdesc._get_methods([0])
        test_methods(methods, [0])
        methods = spdesc._get_methods([0, 1, 2])
        test_methods(methods, [0, 1, 2])

        desc = spdesc._compute_descriptors(10)
        desc = spdesc._compute_descriptors([10])
        desc = spdesc._compute_descriptors([0, 1, 2])

        desc = spdesc.compute(10)
        desc = spdesc.compute([10])
        desc = spdesc.compute([0, 1, 2])

        #Retrieverdriven
        aux_i = 0
        for desc_i, vals_i in spdesc.compute_nets_i():
            assert(len(desc_i) == len(vals_i))
            assert(len(desc_i) == spdesc.featurers.k_perturb+1)
            aux_i += 1
            if aux_i == 100:
                break
        aux_i = 0
        for desc_ik, vals_ik in spdesc.compute_net_ik():
            aux_i += 1
            if aux_i == 100:
                break

        ## Loops
#        for idx in spdesc.iter_indices():
#            break
#        for vals_ik, desc_ik in spdesc.compute_net_ik():
#            #assert(vals_ik)
#            #assert(desc_ik)
#            break
#        for desc_i, vals_i in spdesc.compute_net_i():
#            #assert(vals_ik)
#            #assert(desc_ik)
#            break

        ## Global computations
#        try:
#            signal.signal(signal.SIGALRM, halting_f)
#            signal.alarm(0.01)   # 0.01 seconds
#            spdesc.compute()
#        except Exception as e:
#            logi = e == "Not error time."
#            if not logi:
#                spdesc.compute()
#        try:
#            signal.signal(signal.SIGALRM, halting_f)
#            signal.alarm(0.01)   # 0.01 seconds
#            spdesc._compute_nets()
#        except Exception as e:
#            logi = e == "Not error time."
#            if not logi:
#                spdesc._compute_nets()
#        try:
#            ## Testing compute_retdriven
#            signal.signal(signal.SIGALRM, halting_f)
#            signal.alarm(0.01)   # 0.01 seconds
#            spdesc._compute_retdriven()
#        except Exception as e:
#            logi = e == "Not error time."
#            if not logi:
#                spdesc._compute_retdriven()
#        try:
#            logfile = Logger('logfile.log')
#            signal.signal(signal.SIGALRM, halting_f)
#            signal.alarm(0.01)   # 0.01 seconds
#            spdesc.compute_process(logfile, lim_rows=100000, n_procs=0)
#            os.remove('logfile.log')
#        except Exception as e:
#            os.remove('logfile.log')
#            logi = e == "Not error time."
#            if not logi:
#                spdesc.compute_process(logfile, lim_rows=100000, n_procs=0)

        ## Testing aggregations
        if len(spdesc.retrievers) == len(spdesc.featurers):
            spdesc.add_aggregations(aggregation_info)
        else:
            spdesc.add_aggregations(aggregation_info, ([0], [0]))
        s += 1

    feats1 = ImplicitFeatures(featsarr0)

    m_vals_i = np.random.randint(0, 5, 50)
    ret = CircRetriever(locs1, autolocs=locs_input, info_ret=3,
                        bool_input_idx=True)
    feat = FeaturesManager(feats1, maps_vals_i=m_vals_i, mode='sequential',
                           descriptormodels=None)
    spdesc = SpatialDescriptorModel(retrievers=ret, featurers=feat,
                                    mapselector_spdescriptor=None,
                                    perturbations=perturbation,
                                    aggregations=None, name_desc=n_desc)
    ## Complete processes
    spdesc.compute()
    logfile = Logger('logfile.log')
    spdesc.compute_process(logfile, lim_rows=100000, n_procs=0)
    os.remove('logfile.log')
    spdesc._compute_nets()
    spdesc._compute_retdriven()
    ## Model functions
    spdesc.fit(np.arange(20), np.random.random(20))
    spdesc.predict(np.arange(20))

    ############
    ### Auxiliar functions
    ####
    spdesc = _spdesc_parsing_creation(ret, feat)
    assert(isinstance(spdesc, SpatialDescriptorModel))
    res = create_aggfeatures(spdesc, None)
    assert(isinstance(res, ExplicitFeatures))

    ###########################################################################
    ###########################################################################
    spdesc_temp = SpatioTemporalDescriptorModel(spdesc)
    indices = np.arange(10)
    y = np.random.random(10)
    spdesc_temp = spdesc_temp.fit(indices, y)
    spdesc_temp.predict(indices)
    spdesc_temp = SpatioTemporalDescriptorModel([spdesc, spdesc])
    indices = np.arange(20)
    y = np.random.random(20)
    spdesc_temp = spdesc_temp.fit(indices, y)
    spdesc_temp.predict(indices)