Пример #1
0
def shuttleworth_wallace(T_A_K,
                         u,
                         ea,
                         p,
                         Sn_C,
                         Sn_S,
                         L_dn,
                         LAI,
                         h_C,
                         emis_C,
                         emis_S,
                         z_0M,
                         d_0,
                         z_u,
                         z_T,
                         leaf_width=0.1,
                         z0_soil=0.01,
                         x_LAD=1,
                         f_c=1,
                         f_g=1,
                         w_C=1,
                         Rst_min=100,
                         R_ss=500,
                         resistance_form=[0, {}],
                         calcG_params=[[1], 0.35],
                         const_L=None,
                         massman_profile=[0, []],
                         leaf_type=TSEB.res.AMPHISTOMATOUS,
                         kB=0):
    '''Shuttleworth and Wallace [Shuttleworth1995]_ dual source energy combination model.
    Calculates turbulent fluxes using meteorological and crop data for a
    dual source system in series.

    T_A_K : float
        Air temperature (Kelvin).
    u : float
        Wind speed above the canopy (m s-1).
    ea : float
        Water vapour pressure above the canopy (mb).
    p : float
        Atmospheric pressure (mb), use 1013 mb by default.
    Sn_C : float
        Canopy net shortwave radiation (W m-2).
    Sn_S : float
        Soil net shortwave radiation (W m-2).
    L_dn : float
        Downwelling longwave radiation (W m-2).
    LAI : float
        Effective Leaf Area Index (m2 m-2).
    h_C : float
        Canopy height (m).
    emis_C : float
        Leaf emissivity.
    emis_S : flaot
        Soil emissivity.
    z_0M : float
        Aerodynamic surface roughness length for momentum transfer (m).
    d_0 : float
        Zero-plane displacement height (m).
    z_u : float
        Height of measurement of windspeed (m).
    z_T : float
        Height of measurement of air temperature (m).
    leaf_width : float, optional
        average/effective leaf width (m).
    z0_soil : float, optional
        bare soil aerodynamic roughness length (m).
    x_LAD : float, optional
        Campbell 1990 leaf inclination distribution function chi parameter.
    f_c : float, optional
        Fractional cover.
    w_C : float, optional
        Canopy width to height ratio.
    Rst_min : float
        Minimum (unstress) single-leaf stomatal coductance (s m -1),
        Default = 100 s m-1
    Rss : float
        Resistance to water vapour transport in the soil surface (s m-1),
        Default = 500 s m-1 (moderately dry soil)
    resistance_form : int, optional
        Flag to determine which Resistances R_x, R_S model to use.

            * 0 [Default] Norman et al 1995 and Kustas et al 1999.
            * 1 : Choudhury and Monteith 1988.
            * 2 : McNaughton and Van der Hurk 1995.
            * 4 : Haghighi and Orr 2015

    calcG_params : list[list,float or array], optional
        Method to calculate soil heat flux,parameters.

            * [[1],G_ratio]: default, estimate G as a ratio of Rn_S, default Gratio=0.35.
            * [[0],G_constant] : Use a constant G, usually use 0 to ignore the computation of G.
            * [[2,Amplitude,phase_shift,shape],time] : estimate G from Santanello and Friedl with G_param list of parameters (see :func:`~TSEB.calc_G_time_diff`).

    const_L : float or None, optional
        If included, its value will be used to force the Moning-Obukhov stability length.
    leaf_type : int
        1: Hipostomatous leaves (stomata only in one side of the leaf)
        2: Amphistomatous leaves (stomata in both sides of the leaf)


    Returns
    -------
    flag : int
        Quality flag, see Appendix for description.
    T_S : float
        Soil temperature  (Kelvin).
    T_C : float
        Canopy temperature  (Kelvin).
    vpd_0 : float
        Water pressure deficit at the canopy interface (mb).
    L_nS : float
        Soil net longwave radiation (W m-2)
    L_nC : float
        Canopy net longwave radiation (W m-2)
    LE : float
        Latent heat flux (W m-2).
    H : float
        Sensible heat flux (W m-2).
    LE_C : float
        Canopy latent heat flux (W m-2).
    H_C : float
        Canopy sensible heat flux (W m-2).
    LE_S : float
        Soil latent heat flux (W m-2).
    H_S : float
        Soil sensible heat flux (W m-2).
    G : float
        Soil heat flux (W m-2).
    R_S : float
        Soil aerodynamic resistance to heat transport (s m-1).
    R_x : float
        Bulk canopy aerodynamic resistance to heat transport (s m-1).
    R_A : float
        Aerodynamic resistance to heat transport (s m-1).
    u_friction : float
        Friction velocity (m s-1).
    L : float
        Monin-Obuhkov length (m).
    n_iterations : int
        number of iterations until convergence of L.

    References
    ----------
    .. [Shuttleworth1995] W.J. Shuttleworth, J.S. Wallace, Evaporation from
        sparse crops - an energy combinatino theory,
        Quarterly Journal of the Royal Meteorological Society , Volume 111, Issue 469,
        Pages 839-855,
        http://dx.doi.org/10.1002/qj.49711146910.
    '''

    # Convert float scalars into numpy arrays and check parameters size
    T_A_K = np.asarray(T_A_K)
    [
        u, ea, p, Sn_C, Sn_S, L_dn, LAI, emis_C, emis_S, h_C, z_0M, d_0, z_u,
        z_T, leaf_width, z0_soil, x_LAD, f_c, f_g, w_C, Rst_min, R_ss,
        calcG_array, leaf_type
    ] = map(TSEB._check_default_parameter_size, [
        u, ea, p, Sn_C, Sn_S, L_dn, LAI, emis_C, emis_S, h_C, z_0M, d_0, z_u,
        z_T, leaf_width, z0_soil, x_LAD, f_c, f_g, w_C, Rst_min, R_ss,
        calcG_params[1], leaf_type
    ], [T_A_K] * 24)

    res_params = resistance_form[1]
    resistance_form = resistance_form[0]

    # Create the output variables
    [
        flag, vpd_0, LE, H, LE_C, H_C, LE_S, H_S, G, R_S, R_x, R_A, Rn, Rn_C,
        Rn_S, C_s, C_c, PM_C, PM_S, iterations
    ] = [np.full(T_A_K.shape, np.NaN) for i in range(20)]

    # Calculate the general parameters
    rho_a = TSEB.met.calc_rho(p, ea, T_A_K)  # Air density
    Cp = TSEB.met.calc_c_p(p, ea)  # Heat capacity of air
    delta = 10. * TSEB.met.calc_delta_vapor_pressure(
        T_A_K)  # slope of saturation water vapour pressure in mb K-1
    lambda_ = TSEB.met.calc_lambda(
        T_A_K)  # latent heat of vaporization MJ kg-1
    psicr = TSEB.met.calc_psicr(Cp, p,
                                lambda_)  # Psicrometric constant (mb K-1)
    es = TSEB.met.calc_vapor_pressure(
        T_A_K)  # saturation water vapour pressure in mb
    rho_cp = rho_a * Cp
    vpd = es - ea
    del es, ea

    F = np.asarray(LAI / f_c)  # Real LAI
    omega0 = TSEB.CI.calc_omega0_Kustas(LAI, f_c, x_LAD=x_LAD, isLAIeff=True)

    # Calculate bulk stomatal conductance
    R_c = bulk_stomatal_resistance(LAI * f_g, Rst_min, leaf_type=leaf_type)
    del leaf_type, Rst_min

    # Initially assume stable atmospheric conditions and set variables for
    # iteration of the Monin-Obukhov length
    if const_L is None:
        # Initially assume stable atmospheric conditions and set variables for
        L = np.asarray(np.zeros(T_A_K.shape) + np.inf)
        max_iterations = ITERATIONS
    else:  # We force Monin-Obukhov lenght to the provided array/value
        L = np.asarray(np.ones(T_A_K.shape) * const_L)
        max_iterations = 1  # No iteration
    u_friction = TSEB.MO.calc_u_star(u, z_u, L, d_0, z_0M)
    u_friction = np.asarray(np.maximum(TSEB.U_FRICTION_MIN, u_friction))
    L_queue = deque([np.array(L)], 6)
    L_converged = np.asarray(np.zeros(T_A_K.shape)).astype(bool)
    L_diff_max = np.inf
    z_0H = TSEB.res.calc_z_0H(z_0M,
                              kB=kB)  # Roughness length for heat transport
    zol = np.zeros(T_A_K.shape)
    # First assume that temperatures equals the Air Temperature
    T_C, T_S, T_0 = T_A_K.copy(), T_A_K.copy(), T_A_K.copy()

    _, _, _, taudl = TSEB.rad.calc_spectra_Cambpell(LAI,
                                                    np.zeros(emis_C.shape),
                                                    1.0 - emis_C,
                                                    np.zeros(emis_S.shape),
                                                    1.0 - emis_S,
                                                    x_lad=x_LAD,
                                                    lai_eff=None)
    emiss = taudl * emis_S + (1 - taudl) * emis_C
    Ln = emiss * (L_dn - TSEB.met.calc_stephan_boltzmann(T_0))
    Ln_C = (1. - taudl) * Ln
    Ln_S = taudl * Ln

    # Outer loop for estimating stability.
    # Stops when difference in consecutives L is below a given threshold
    start_time = time.time()
    loop_time = time.time()
    for n_iterations in range(max_iterations):
        i = ~L_converged
        if np.all(L_converged):
            if L_converged.size == 0:
                print("Finished iterations with no valid solution")
            else:
                print("Finished interations with a max. L diff: " +
                      str(L_diff_max))
            break
        current_time = time.time()
        loop_duration = current_time - loop_time
        loop_time = current_time
        total_duration = loop_time - start_time
        print(
            "Iteration: %d, non-converged pixels: %d, max L diff: %f, total time: %f, loop time: %f"
            % (n_iterations, np.sum(i), L_diff_max, total_duration,
               loop_duration))

        iterations[i] = n_iterations
        flag[i] = 0

        T_C_old = np.zeros(T_C.shape)
        T_S_old = np.zeros(T_S.shape)
        for nn_interations in range(max_iterations):
            # Calculate aerodynamic resistances
            R_A[i], R_x[i], R_S[i] = TSEB.calc_resistances(
                resistance_form, {
                    "R_A": {
                        "z_T": z_T[i],
                        "u_friction": u_friction[i],
                        "L": L[i],
                        "d_0": d_0[i],
                        "z_0H": z_0H[i],
                    },
                    "R_x": {
                        "u_friction": u_friction[i],
                        "h_C": h_C[i],
                        "d_0": d_0[i],
                        "z_0M": z_0M[i],
                        "L": L[i],
                        "LAI": LAI[i],
                        "leaf_width": leaf_width[i],
                        "massman_profile": massman_profile,
                        "res_params":
                        {k: res_params[k][i]
                         for k in res_params.keys()}
                    },
                    "R_S": {
                        "u_friction": u_friction[i],
                        'u': u[i],
                        "h_C": h_C[i],
                        "d_0": d_0[i],
                        "z_0M": z_0M[i],
                        "L": L[i],
                        "F": F[i],
                        "omega0": omega0[i],
                        "LAI": LAI[i],
                        "leaf_width": leaf_width[i],
                        "z0_soil": z0_soil[i],
                        "z_u": z_u[i],
                        "deltaT": T_S[i] - T_0[i],
                        "massman_profile": massman_profile,
                        'rho': rho_a[i],
                        'c_p': Cp[i],
                        'f_cover': f_c[i],
                        'w_C': w_C[i],
                        "res_params":
                        {k: res_params[k][i]
                         for k in res_params.keys()}
                    }
                })

            _, _, _, C_s[i], C_c[i] = calc_effective_resistances_SW(
                R_A[i], R_x[i], R_S[i], R_c[i], R_ss[i], delta[i], psicr[i])

            # Compute net bulk longwave radiation and split between canopy and soil
            Ln[i] = emiss[i] * (L_dn[i] -
                                TSEB.met.calc_stephan_boltzmann(T_0[i]))
            Ln_C[i] = (1. - taudl[i]) * Ln[i]
            Ln_S[i] = taudl[i] * Ln[i]

            Rn_C[i] = Sn_C[i] + Ln_C[i]
            Rn_S[i] = Sn_S[i] + Ln_S[i]
            Rn[i] = Rn_C[i] + Rn_S[i]
            # Compute Soil Heat Flux Ratio
            G[i] = TSEB.calc_G([calcG_params[0], calcG_array], Rn_S, i)

            # Eq. 12 in [Shuttleworth1988]_
            PM_C[i] = (delta[i] * (Rn[i] - G[i]) + (
                        rho_cp[i] * vpd[i] - delta[i] * R_x[i] * (Rn_S[i] - G[i])) / (
                               R_A[i] + R_x[i])) / \
                      (delta[i] + psicr[i] * (1. + R_c[i] / (R_A[i] + R_x[i])))

            # Avoid arithmetic error with no LAI
            PM_C[np.isnan(PM_C)] = 0
            # Eq. 13 in [Shuttleworth1988]_
            PM_S[i] = (delta[i] * (Rn[i] - G[i]) + (
                        rho_cp[i] * vpd[i] - delta[i] * R_S[i] * Rn_C[i]) / (
                                   R_A[i] + R_S[i])) / \
                      (delta[i] + psicr[i] * (1. + R_ss[i] / (R_A[i] + R_S[i])))
            PM_S[np.isnan(PM_S)] = 0
            # Eq. 11 in [Shuttleworth1988]_
            LE[i] = C_c[i] * PM_C[i] + C_s[i] * PM_S[i]
            H[i] = Rn[i] - G[i] - LE[i]

            # Compute canopy and soil  fluxes
            # Vapor pressure deficit at canopy source height (mb) # Eq. 8 in [Shuttleworth1988]_
            vpd_0[i] = vpd[i] + (
                        delta[i] * (Rn[i] - G[i]) - (delta[i] + psicr[i]) * LE[i]) * \
                       R_A[i] / (rho_cp[i])
            # Eq. 9 in Shuttleworth & Wallace 1985
            LE_S[i] = (delta[i] * (Rn_S[i] - G[i]) + rho_cp[i] * vpd_0[i] / R_S[i]) / \
                      (delta[i] + psicr[i] * (1. + R_ss[i] / R_S[i]))
            LE_S[np.isnan(LE_S)] = 0
            H_S[i] = Rn_S[i] - G[i] - LE_S[i]
            # Eq. 10 in Shuttleworth & Wallace 1985
            LE_C[i] = (delta[i] * Rn_C[i] + rho_cp[i] * vpd_0[i] / R_x[i]) / \
                      (delta[i] + psicr[i] * (1. + R_c[i] / R_x[i]))
            H_C[i] = Rn_C[i] - LE_C[i]
            no_canopy = np.logical_and(i, np.isnan(LE_C))
            H_C[no_canopy] = np.nan
            T_0[i] = calc_T(H[i], T_A_K[i], R_A[i], rho_a[i], Cp[i])
            T_C[i] = calc_T(H_C[i], T_0[i], R_x[i], rho_a[i], Cp[i])
            T_S[i] = calc_T(H_S[i], T_0[i], R_S[i], rho_a[i], Cp[i])
            no_valid_T = np.logical_and.reduce(
                (i, T_C <= T_A_K - LOWEST_TC_DIFF,
                 T_S <= T_A_K - LOWEST_TS_DIFF))
            flag[no_valid_T] = F_LOW_TS_TC
            T_C[no_valid_T] = T_A_K[no_valid_T] - LOWEST_TC_DIFF
            T_S[no_valid_T] = T_A_K[no_valid_T] - LOWEST_TS_DIFF
            no_valid_T = np.logical_and(i, T_C <= T_A_K - LOWEST_TC_DIFF)
            flag[no_valid_T] = F_LOW_TC
            T_C[no_valid_T] = T_A_K[no_valid_T] - LOWEST_TC_DIFF
            no_valid_T = np.logical_and(i, T_S <= T_A_K - LOWEST_TS_DIFF)
            flag[no_valid_T] = F_LOW_TS
            T_S[no_valid_T] = T_A_K[no_valid_T] - LOWEST_TS_DIFF


            if np.all(np.abs(T_C - T_C_old) < T_DIFF_THRES) \
                    and np.all(np.abs(T_S - T_S_old) < T_DIFF_THRES):
                break
            else:
                T_C_old = T_C.copy()
                T_S_old = T_S.copy()

        # Now L can be recalculated and the difference between iterations
        # derived
        if const_L is None:
            L[i] = TSEB.MO.calc_mo_length(u_friction[i], T_A_K[i], rho_a[i],
                                          Cp[i], H[i])
            zol[i] = z_0M[i] / L[i]
            stable = np.logical_and(i, zol > STABILITY_THRES)
            L[stable] = 1e36

            # Calculate again the friction velocity with the new stability
            # correctios
            u_friction[i] = TSEB.MO.calc_u_star(u[i], z_u[i], L[i], d_0[i],
                                                z_0M[i])
            u_friction[i] = np.asarray(
                np.maximum(TSEB.U_FRICTION_MIN, u_friction[i]))

            # We check convergence against the value of L from previous iteration but as well
            # against values from 2 or 3 iterations back. This is to catch situations (not
            # infrequent) where L oscillates between 2 or 3 steady state values.
            L_new = L.copy()
            L_new[L_new == 0] = 1e-6
            L_queue.appendleft(L_new)
            L_converged[i] = TSEB._L_diff(L_queue[0][i],
                                          L_queue[1][i]) < TSEB.L_thres
            L_diff_max = np.max(TSEB._L_diff(L_queue[0][i], L_queue[1][i]))
            if len(L_queue) >= 4:
                L_converged[i] = np.logical_and(
                    TSEB._L_diff(L_queue[0][i], L_queue[2][i]) < TSEB.L_thres,
                    TSEB._L_diff(L_queue[1][i], L_queue[3][i]) < TSEB.L_thres)
            if len(L_queue) == 6:
                L_converged[i] = np.logical_and.reduce(
                    (TSEB._L_diff(L_queue[0][i], L_queue[3][i]) < TSEB.L_thres,
                     TSEB._L_diff(L_queue[1][i], L_queue[4][i]) < TSEB.L_thres,
                     TSEB._L_diff(L_queue[2][i], L_queue[5][i]) <
                     TSEB.L_thres))

    (flag, T_S, T_C, vpd_0, L_nS, L_nC, LE_C, H_C, LE_S, H_S, G, R_S, R_x, R_A,
     u_friction, L,
     n_iterations) = map(np.asarray,
                         (flag, T_S, T_C, vpd_0, Ln_S, Ln_C, LE_C, H_C, LE_S,
                          H_S, G, R_S, R_x, R_A, u_friction, L, iterations))

    return flag, T_S, T_C, vpd_0, Ln_S, Ln_C, LE, H, LE_C, H_C, LE_S, H_S, G, R_S, R_x, R_A, u_friction, L, n_iterations
Пример #2
0
def shuttleworth_wallace(T_A_K, 
                         u, 
                         ea, 
                         p, 
                         Sn_C, 
                         Sn_S, 
                         L_dn,
                         LAI, 
                         h_C, 
                         emis_C,
                         emis_S,
                         z_0M, 
                         d_0, 
                         z_u, 
                         z_T, 
                         leaf_width=0.1, 
                         z0_soil=0.01,
                         x_LAD=1,
                         f_c=1,
                         w_C=1,
                         Rst_min=100,
                         R_ss=500,
                         resistance_form=[0, {}],
                         calcG_params=[
                                [1],
                                0.35],
                         UseL=False,
                         massman_profile=[0,[]],
                         leaf_type=TSEB.res.AMPHISTOMATOUS,
                         environmental_factors=1):
                             
    '''Shuttleworth and Wallace [Shuttleworth1995]_ dual source energy combination model.
    Calculates turbulent fluxes using meteorological and crop data for a 
    dual source system in series.
    
    T_A_K : float
        Air temperature (Kelvin).
    u : float
        Wind speed above the canopy (m s-1).
    ea : float
        Water vapour pressure above the canopy (mb).
    p : float
        Atmospheric pressure (mb), use 1013 mb by default.
    Sn_C : float
        Canopy net shortwave radiation (W m-2).
    Sn_S : float
        Soil net shortwave radiation (W m-2).
    L_dn : float
        Downwelling longwave radiation (W m-2).
    LAI : float
        Effective Leaf Area Index (m2 m-2).
    h_C : float
        Canopy height (m).
    emis_C : float
        Leaf emissivity.
    emis_S : flaot
        Soil emissivity.
    z_0M : float
        Aerodynamic surface roughness length for momentum transfer (m).
    d_0 : float
        Zero-plane displacement height (m).
    z_u : float
        Height of measurement of windspeed (m).
    z_T : float
        Height of measurement of air temperature (m).
    leaf_width : float, optional
        average/effective leaf width (m).
    z0_soil : float, optional
        bare soil aerodynamic roughness length (m).
    x_LAD : float, optional
        Campbell 1990 leaf inclination distribution function chi parameter.
    f_c : float, optional
        Fractional cover.
    w_C : float, optional
        Canopy width to height ratio.
    Rst_min : float
        Minimum (unstress) single-leaf stomatal coductance (s m -1), 
        Default = 100 s m-1
    Rss : float
        Resistance to water vapour transport in the soil surface (s m-1), 
        Default = 500 s m-1 (moderately dry soil)
    resistance_form : int, optional
        Flag to determine which Resistances R_x, R_S model to use.

            * 0 [Default] Norman et al 1995 and Kustas et al 1999.
            * 1 : Choudhury and Monteith 1988.
            * 2 : McNaughton and Van der Hurk 1995.
            * 4 : Haghighi and Orr 2015

    calcG_params : list[list,float or array], optional
        Method to calculate soil heat flux,parameters.

            * [[1],G_ratio]: default, estimate G as a ratio of Rn_S, default Gratio=0.35.
            * [[0],G_constant] : Use a constant G, usually use 0 to ignore the computation of G.
            * [[2,Amplitude,phase_shift,shape],time] : estimate G from Santanello and Friedl with G_param list of parameters (see :func:`~TSEB.calc_G_time_diff`).
            
    UseL : float or None, optional
        If included, its value will be used to force the Moning-Obukhov stability length.
    leaf_type : int
        1: Hipostomatous leaves (stomata only in one side of the leaf)
        2: Amphistomatous leaves (stomata in both sides of the leaf)
    environmental_factors : float [0-1]
        Correction factor for stomatal conductance in case of biotic (water) or abiotic (atmospheric) stress. Default = 1.

    Returns
    -------
    flag : int
        Quality flag, see Appendix for description.
    T_S : float
        Soil temperature  (Kelvin).
    T_C : float
        Canopy temperature  (Kelvin).
    vpd_0 : float
        Water pressure deficit at the canopy interface (mb).
    L_nS : float
        Soil net longwave radiation (W m-2)
    L_nC : float
        Canopy net longwave radiation (W m-2)
    LE : float
        Latent heat flux (W m-2).
    H : float
        Sensible heat flux (W m-2).
    LE_C : float
        Canopy latent heat flux (W m-2).
    H_C : float
        Canopy sensible heat flux (W m-2).
    LE_S : float
        Soil latent heat flux (W m-2).
    H_S : float
        Soil sensible heat flux (W m-2).
    G : float
        Soil heat flux (W m-2).
    R_S : float
        Soil aerodynamic resistance to heat transport (s m-1).
    R_x : float
        Bulk canopy aerodynamic resistance to heat transport (s m-1).
    R_A : float
        Aerodynamic resistance to heat transport (s m-1).
    u_friction : float
        Friction velocity (m s-1).
    L : float
        Monin-Obuhkov length (m).
    n_iterations : int
        number of iterations until convergence of L.

    References
    ----------
    .. [Shuttleworth1995] W.J. Shuttleworth, J.S. Wallace, Evaporation from 
        sparse crops - an energy combinatino theory, 
        Quarterly Journal of the Royal Meteorological Society , Volume 111, Issue 469,
        Pages 839-855,
        http://dx.doi.org/10.1002/qj.49711146910.
    '''
    
    # Convert float scalars into numpy arrays and check parameters size
    T_A_K = np.asarray(T_A_K)
    [u, 
     ea, 
     p, 
     Sn_C,
     Sn_S, 
     L_dn, 
     LAI,
     emis_C,
     emis_S,
     h_C,
     z_0M, 
     d_0, 
     z_u, 
     z_T,
     leaf_width,
     z0_soil,
     x_LAD,
     f_c,
     w_C,
     Rst_min,
     R_ss,
     calcG_array,
     leaf_type] = map(TSEB._check_default_parameter_size,
                        [u, 
                         ea, 
                         p, 
                         Sn_C,
                         Sn_S,
                         L_dn, 
                         LAI,
                         emis_C,
                         emis_S,
                         h_C,
                         z_0M, 
                         d_0, 
                         z_u, 
                         z_T,
                         leaf_width,
                         z0_soil,
                         x_LAD,
                         f_c,
                         w_C,
                         Rst_min,
                         R_ss,
                         calcG_params[1],
                         leaf_type],
                        [T_A_K] * 24)
    
    res_params = resistance_form[1]
    resistance_form = resistance_form[0]
    
    # Create the output variables
    [flag, vpd_0, Ln_C, Ln_S, LE, H, LE_C, H_C, LE_S, H_S, G, R_S, R_x, R_A, 
     iterations] = [np.zeros(T_A_K.shape)+np.NaN for i in range(15)]
    
    
    # Calculate the general parameters
    rho_a = TSEB.met.calc_rho(p, ea, T_A_K)              # Air density
    Cp = TSEB.met.calc_c_p(p, ea)                        # Heat capacity of air
    delta=10.*TSEB.met.calc_delta_vapor_pressure(T_A_K)  # slope of saturation water vapour pressure in mb K-1
    lambda_=TSEB.met.calc_lambda(T_A_K)                     # latent heat of vaporization MJ kg-1
    psicr=TSEB.met.calc_psicr(p, lambda_)                     # Psicrometric constant (mb K-1)
    es=TSEB.met.calc_vapor_pressure(T_A_K)             # saturation water vapour pressure in mb
    
    # Calculate LAI dependent parameters for dataset where LAI > 0
    F = np.asarray(LAI / f_c)  # Real LAI
    
    rho_cp=rho_a*Cp
    vpd=es-ea

    # Calculate bulk stomatal conductance
    R_c=bulk_stomatal_conductance(LAI, Rst_min, leaf_type=leaf_type, environmental_factors=environmental_factors)

    F = np.asarray(LAI / f_c)  # Real LAI
    omega0=TSEB.CI.calc_omega0_Kustas(LAI, f_c, x_LAD=x_LAD, isLAIeff=True)
    
    
    # Initially assume stable atmospheric conditions and set variables for
    # iteration of the Monin-Obukhov length
    # iteration of the Monin-Obukhov length
    if isinstance(UseL, bool):
        # Initially assume stable atmospheric conditions and set variables for
        L = np.asarray(np.zeros(T_A_K.shape) + np.inf)
        max_iterations = ITERATIONS
    else:  # We force Monin-Obukhov lenght to the provided array/value
        L = np.asarray(np.ones(T_A_K.shape) * UseL)
        max_iterations = 1  # No iteration
    u_friction = TSEB.MO.calc_u_star(u, z_u, L, d_0, z_0M)
    u_friction = np.asarray(np.maximum(u_friction_min, u_friction))
    L_old = np.ones(T_A_K.shape)
    L_diff = np.asarray(np.ones(T_A_K.shape) * float('inf'))
 
    z_0H = TSEB.res.calc_z_0H(z_0M, kB=kB)  # Roughness length for heat transport
   
    # First assume that temperatures equals the Air Temperature
    T_C, T_S = np.array(T_A_K), np.array(T_A_K)
    emis_surf=f_c*emis_C+(1.-f_c)*emis_S
    Ln=emis_surf*(L_dn-TSEB.rad.sb*T_A_K**4)
    Ln_S=Ln*np.exp(-0.95 * LAI)
    Ln_C=Ln-Ln_S

    for n_iterations in range(max_iterations):
   
        if np.all(L_diff < L_thres):
            #print("Finished interation with a max. L diff: " + str(np.max(L_diff)))
            break
        
        #print("Iteration " + str(n_iterations) +", max. L diff: " + str(np.max(L_diff)))

        i = np.logical_and(L_diff >= L_thres, flag != 255)
        iterations[i] = n_iterations
        flag[i] = 0  

        # Calculate aerodynamic resistances
        R_A_params = {"z_T": z_T[i], "u_friction": u_friction[i], "L": L[i], 
                      "d_0": d_0[i], "z_0H": z_0H[i]}
        params = {k: res_params[k][i] for k in res_params.keys()}
        R_x_params = {"u_friction": u_friction[i], "h_C": h_C[i], "d_0": d_0[i],
                      "z_0M": z_0M[i], "L": L[i],  "LAI": LAI[i], 
                      "leaf_width": leaf_width[i], "massman_profile": massman_profile,
                      "res_params": params}
        R_S_params = {"u_friction": u_friction[i], 'u':u[i], "h_C": h_C[i], "d_0": d_0[i],
                      "z_0M": z_0M[i], "L": L[i], "F": F[i], "omega0": omega0[i], 
                       "LAI": LAI[i], "leaf_width": leaf_width[i], 
                       "z0_soil": z0_soil[i], "z_u": z_u[i],  
                       "deltaT": T_S[i] - T_C[i], "massman_profile": massman_profile,
                       'u':u[i],'rho':rho_a[i], 'c_p':Cp[i], 'f_cover':f_c[i], 
                       'w_C':w_C[i],
                       "res_params": params}
        res_types = {"R_A": R_A_params, "R_x": R_x_params, "R_S": R_S_params}
        R_A[i], R_x[i], R_S[i] = TSEB.calc_resistances(resistance_form, res_types)

        _, _, _, C_s, C_c = calc_effective_resistances_SW(R_A[i], 
                                               R_x[i], 
                                               R_S[i], 
                                               R_c[i],
                                               R_ss[i],
                                               delta[i],
                                               psicr[i])
        # Calculate net longwave radiation with current values of T_C and T_S
        Ln_C[i], Ln_S[i] = TSEB.rad.calc_L_n_Kustas(
            T_C[i], T_S[i], L_dn[i], LAI[i], emis_C[i], emis_S[i])
        Rn_C = Sn_C + Ln_C
        Rn_S = Sn_S + Ln_S
        Rn = Rn_C+Rn_S
        # Compute Soil Heat Flux Ratio
        G[i] = TSEB.calc_G([calcG_params[0], calcG_array], Rn_S, i)
        
        # Eq. 12 in [Shuttleworth1988]_
        PM_C = (delta[i]*(Rn[i]-G[i])+(rho_cp[i]*vpd[i]-delta[i]*R_x[i]*(Rn_S[i]-G[i]))/(R_A[i]+R_x[i]))/\
            (delta[i]+psicr[i]*(1.+R_c[i]/(R_A[i]+R_x[i])))
        # Eq. 13 in [Shuttleworth1988]_
        PM_S = (delta[i]*(Rn[i]-G[i])+(rho_cp[i]*vpd[i]-delta[i]*R_S[i]*Rn_C[i])/(R_A[i]+R_S[i]))/\
            (delta[i]+psicr[i]*(1.+R_ss[i]/(R_A[i]+R_S[i])))
        # Eq. 11 in [Shuttleworth1988]_
        LE[i] = C_c*PM_C+C_s*PM_S
        H[i] = Rn[i]-G[i]-LE[i]
        
        # Compute canopy and soil  fluxes
        #Vapor pressure deficit at canopy source height (mb) # Eq. 8 in [Shuttleworth1988]_
        vpd_0[i]=vpd[i]+(delta[i]*(Rn[i]-G[i])-(delta[i]+psicr[i])*LE[i])*R_A[i]/(rho_cp[i])
        # Eq. 9 in Shuttleworth & Wallace 1985
        LE_S[i]=(delta[i]*(Rn_S[i]-G[i])+rho_cp[i]*vpd_0[i]/R_S[i])/\
            (delta[i]+psicr[i]*(1.+R_ss[i]/R_S[i]))  
        H_S[i]=Rn_S[i]-G[i]-LE_S[i]
        # Eq. 10 in Shuttleworth & Wallace 1985
        LE_C[i]=(delta[i]*Rn_C[i]+rho_cp[i]*vpd_0[i]/R_x[i])/\
            (delta[i]+psicr[i]*(1.+R_c[i]/R_x[i])) 
        H_C[i]=Rn_C[i]-LE_C[i]
        
        T_C[i]=calc_T(H_C[i], T_A_K[i], R_A[i]+R_x[i], rho_a[i], Cp[i])
        T_S[i]=calc_T(H_S[i], T_A_K[i], R_A[i]+R_S[i], rho_a[i], Cp[i])
        flag[np.logical_and(i,T_C<0)]=255
        flag[np.logical_and(i,T_S<0)]=255
        
        # Now L can be recalculated and the difference between iterations
        # derived
        if isinstance(UseL, bool):
            L[i] = TSEB.MO.calc_L(
                    u_friction[i],
                    T_A_K[i],
                    rho_a[i],
                    Cp[i],
                    H[i],
                    LE[i])
            L_diff = np.asarray(np.fabs(L - L_old) / np.fabs(L_old))
            L_diff[np.isnan(L_diff)] = np.inf
            L_old = np.array(L)
            L_old[L_old == 0] = 1e-36

            # Calculate again the friction velocity with the new stability
            # correctios
            u_friction[i] = TSEB.MO.calc_u_star(u[i], z_u[i], L[i], d_0[i], z_0M[i])
            u_friction = np.asarray(np.maximum(u_friction_min, u_friction))
    
    (flag,
     T_S,
     T_C,
     vpd_0,
     L_nS,
     L_nC,
     LE_C,
     H_C,
     LE_S,
     H_S,
     G,
     R_S,
     R_x,
     R_A,
     u_friction,
     L,
     n_iterations) = map(np.asarray,
                         (flag,
                          T_S,
                          T_C,
                          vpd_0,
                          Ln_S,
                          Ln_C,
                          LE_C,
                          H_C,
                          LE_S,
                          H_S,
                          G,
                          R_S,
                          R_x,
                          R_A,
                          u_friction,
                          L,
                          iterations))
    
    return flag, T_S, T_C, vpd_0, Ln_S, Ln_C, LE, H, LE_C, H_C, LE_S, H_S, G, R_S, R_x, R_A, u_friction, L, n_iterations
Пример #3
0
def ESVEP(Tr_K,
          vza,
          T_A_K,
          u,
          ea,
          p,
          Sn_C,
          Sn_S,
          L_dn,
          LAI,
          emis_C,
          emis_S,
          z_0M,
          d_0,
          z_u,
          z_T,
          z0_soil=0.001,
          x_LAD=1,
          f_c=1.0,
          f_g=1.0,
          w_C=1.0,
          calcG_params=[[1], 0.35],
          UseL=False):
    '''ESVEP

    Calculates soil and vegetation energy fluxes using Soil and Vegetation Energy Patrtitioning
    `ESVEP` model and a single observation of composite radiometric temperature.

    Parameters
    ----------
    Tr_K : float
        Radiometric composite temperature (Kelvin).
    vza : float
        View Zenith Angle (degrees).
    T_A_K : float
        Air temperature (Kelvin).
    u : float
        Wind speed above the canopy (m s-1).
    ea : float
        Water vapour pressure above the canopy (mb).
    p : float
        Atmospheric pressure (mb), use 1013 mb by default.
    Sn_C : float
        Canopy net shortwave radiation (W m-2).
    Sn_S : float
        Soil net shortwave radiation (W m-2).
    L_dn : float
        Downwelling longwave radiation (W m-2).
    LAI : float
        Effective Leaf Area Index (m2 m-2).
    emis_C : float
        Leaf emissivity.
    emis_S : flaot
        Soil emissivity.
    z_0M : float
        Aerodynamic surface roughness length for momentum transfer (m).
    d_0 : float
        Zero-plane displacement height (m).
    z_u : float
        Height of measurement of windspeed (m).
    z_T : float
        Height of measurement of air temperature (m).
    z0_soil : float, optional
        bare soil aerodynamic roughness length (m).
    x_LAD : float, optional
        Campbell 1990 leaf inclination distribution function chi parameter.
    f_c : float, optional
        Fractional cover.
    f_g : float, optional
        Fraction of vegetation that is green.
    w_C : float, optional
        Canopy width to height ratio.
    calcG_params : list[list,float or array], optional
        Method to calculate soil heat flux,parameters.
            * [[1],G_ratio]: default, estimate G as a ratio of Rn_S, default Gratio=0.35.
            * [[0],G_constant] : Use a constant G, usually use 0 to ignore the computation of G.
            * [[2,Amplitude,phase_shift,shape],time] : estimate G from Santanello and Friedl with G_param list of parameters (see :func:`~TSEB.calc_G_time_diff`).
    UseL : float or None, optional
        If included, its value will be used to force the Moning-Obukhov stability length.

    Returns
    -------
    flag : int
        Quality flag, see Appendix for description.
    T_S : float
        Soil temperature  (Kelvin).
    T_C : float
        Canopy temperature  (Kelvin).
    T_sd: float
        End-member temperature of dry soil (Kelvin)
    T_vd: float
        End-member temperature of dry vegetation (Kelvin)
    T_sw: float
        End-member temperature of saturated soil (Kelvin)
    T_vw: float
        End-member temperature of well-watered vegetation (Kelvin)
    T_star: float
        Critical surface temperature (Kelvin)
    L_nS : float
        Soil net longwave radiation (W m-2)
    L_nC : float
        Canopy net longwave radiation (W m-2)
    LE_C : float
        Canopy latent heat flux (W m-2).
    H_C : float
        Canopy sensible heat flux (W m-2).
    LE_S : float
        Soil latent heat flux (W m-2).
    H_S : float
        Soil sensible heat flux (W m-2).
    G : float
        Soil heat flux (W m-2).
    r_vw: float
        Canopy resistance to heat transport of well-watered vegetation (s m-1)
    r_vd: float
        Canopy resistance to heat transport of vegetation with zero soil water avaiability (s m-1)
    r_av: float
        Aerodynamic resistance to heat transport of the vegetation (s m-1)
    r_as: float
        Aerodynamic resistance to heat transport of the soil (s m-1)
    L : float
        Monin-Obuhkov length (m).
    n_iterations : int
        number of iterations until convergence of L.

    References
    ----------
    .. [Tang2017] Tang, R., and Z. L. Li. An End-Member-Based Two-Source Approach for Estimating  
        Land Surface Evapotranspiration From Remote Sensing Data. IEEE Transactions on Geoscience 
        and Remote Sensing 55, no. 10 (October 2017): 5818–32. 
        https://doi.org/10.1109/TGRS.2017.2715361.
    '''

    # Convert input float scalars to arrays and check parameters size
    Tr_K = np.asarray(Tr_K)
    (vza, T_A_K, u, ea, p, Sn_C, Sn_S, L_dn, LAI, emis_C, emis_S, z_0M, d_0,
     z_u, z_T, z0_soil, x_LAD, f_c, f_g, w_C,
     calcG_array) = map(tseb._check_default_parameter_size, [
         vza, T_A_K, u, ea, p, Sn_C, Sn_S, L_dn, LAI, emis_C, emis_S, z_0M,
         d_0, z_u, z_T, z0_soil, x_LAD, f_c, f_g, w_C, calcG_params[1]
     ], [Tr_K] * 21)

    # Create the output variables
    [
        flag, T_S, T_C, T_sd, T_vd, T_sw, T_vw, T_star, Ln_S, Ln_C, LE_C, H_C,
        LE_S, H_S, G, r_vw, r_vd, r_av, r_as, iterations
    ] = [np.zeros(Tr_K.shape) + np.NaN for i in range(20)]

    # iteration of the Monin-Obukhov length
    if isinstance(UseL, bool):
        # Initially assume stable atmospheric conditions and set variables for
        L = np.asarray(np.zeros(T_S.shape) + np.inf)
        max_iterations = ITERATIONS
    else:  # We force Monin-Obukhov lenght to the provided array/value
        L = np.asarray(np.ones(T_S.shape) * UseL)
        max_iterations = 1  # No iteration

    # Calculate the general parameters
    rho = met.calc_rho(p, ea, T_A_K)  # Air density
    c_p = met.calc_c_p(p, ea)  # Heat capacity of air
    z_0H = res.calc_z_0H(z_0M, kB=kB)  # Roughness length for heat transport
    z_0H_soil = res.calc_z_0H(z0_soil,
                              kB=kB)  # Roughness length for heat transport
    s = met.calc_delta_vapor_pressure(
        T_A_K) * 10  # slope of the saturation pressure curve (mb C-1)
    lbd = met.calc_lambda(T_A_K)  # latent heat of vaporisation (MJ./kg)
    gama = met.calc_psicr(p, lbd)  # psychrometric constant (mb C-1)
    vpd = met.calc_vapor_pressure(T_A_K) - ea  # vapor pressure deficit (mb)

    # Calculate LAI dependent parameters for dataset where LAI > 0
    omega0 = CI.calc_omega0_Kustas(LAI, f_c, x_LAD=x_LAD, isLAIeff=True)
    F = np.asarray(LAI / f_c)  # Real LAI
    # Fraction of vegetation observed by the sensor
    f_theta = tseb.calc_F_theta_campbell(vza,
                                         F,
                                         w_C=w_C,
                                         Omega0=omega0,
                                         x_LAD=x_LAD)

    # Initially assume stable atmospheric conditions and set variables for
    # iteration of the Monin-Obukhov length
    u_friction = MO.calc_u_star(u, z_u, L, d_0, z_0M)
    u_friction = np.asarray(np.maximum(u_friction_min, u_friction))
    u_friction_s = MO.calc_u_star(u, z_u, L, np.zeros(d_0.shape), z0_soil)
    u_friction_s = np.asarray(np.maximum(u_friction_min, u_friction_s))
    L_old = np.ones(Tr_K.shape)
    L_diff = np.asarray(np.ones(Tr_K.shape) * float('inf'))

    # First assume that canopy temperature equals the minumum of Air or
    # radiometric T
    T_C = np.asarray(np.minimum(Tr_K, T_A_K))
    flag, T_S = tseb.calc_T_S(Tr_K, T_C, f_theta)

    # Loop for estimating stability.
    # Stops when difference in consecutives L is below a given threshold
    for n_iterations in range(max_iterations):
        i = flag != 255
        if np.all(L_diff[i] < L_thres):
            if L_diff[i].size == 0:
                print("Finished iterations with no valid solution")
            else:
                print("Finished interations with a max. L diff: " +
                      str(np.max(L_diff[i])))
            break
        i = np.logical_and(L_diff >= L_thres, flag != 255)
        print("Iteration " + str(n_iterations) + ", max. L diff: " +
              str(np.max(L_diff[i])))
        iterations[i] = n_iterations

        # Calculate net longwave radiation with current values of T_C and T_S
        Ln_C[i], Ln_S[i] = rad.calc_L_n_Kustas(T_C[i], T_S[i], L_dn[i], LAI[i],
                                               emis_C[i], emis_S[i])
        Rn_C = Sn_C + Ln_C
        Rn_S = Sn_S + Ln_S

        # Compute Soil Heat Flux
        G[i] = tseb.calc_G([calcG_params[0], calcG_array], Rn_S, i)

        # Calculate aerodynamic resistances
        r_vw[i] = 100.0 / LAI[i]
        r_vd[i] = np.zeros(LAI[i].shape) + 2000.0
        r_av_params = {
            "z_T": z_T[i],
            "u_friction": u_friction[i],
            "L": L[i],
            "d_0": d_0[i],
            "z_0H": z_0H[i]
        }
        r_av[i] = tseb.calc_resistances(tseb.KUSTAS_NORMAN_1999,
                                        {"R_A": r_av_params})[0]
        r_as_params = {
            "z_T": z_T[i],
            "u_friction": u_friction_s[i],
            "L": L[i],
            "d_0": np.zeros(d_0[i].shape),
            "z_0H": z_0H_soil[i]
        }
        r_as[i] = tseb.calc_resistances(tseb.KUSTAS_NORMAN_1999,
                                        {"R_A": r_as_params})[0]

        # Estimate the surface temperatures of the end-members
        # Eq 8a
        T_sd[i] = r_as[i] * (Rn_S[i] - G[i]) / (rho[i] * c_p[i]) + T_A_K[i]
        # Eq 8b
        T_vd[i] = r_av[i] * Rn_C[i] / (rho[i] * c_p[i]) *\
                  gama[i] * (1 + r_vd[i] / r_av[i]) / (s[i] + gama[i] * (1 + r_vd[i] / r_av[i])) -\
                  vpd[i] / (s[i] + gama[i] * (1 + r_vd[i] / r_av[i])) + T_A_K[i]
        # Eq 8c
        T_sw[i] = r_as[i] * (Rn_S[i] - G[i]) / (rho[i] + c_p[i]) *\
                  gama[i] / (s[i] + gama[i]) - vpd[i] / (s[i] + gama[i]) + T_A_K[i]
        # Eq 8d
        T_vw[i] = r_av[i] * Rn_C[i] / (rho[i] * c_p[i]) *\
                  gama[i] * (1 + r_vw[i] / r_av[i]) / (s[i] + gama[i] * (1 + r_vw[i] / r_av[i])) -\
                  vpd[i] / (s[i] + gama[i] * (1 + r_vw[i] / r_av[i])) + T_A_K[i]

        # Estimate critical surface temperature - eq 10
        T_star[i] = (T_sd[i]**4 * (1 - f_theta[i]) +
                     T_vw[i]**4 * f_theta[i])**0.25

        # Estimate latent heat fluxes when water in the top-soil is avaiable for evaporation
        j = np.logical_and(Tr_K <= T_star, i)
        # Eq 12a
        T_C[j] = T_vw[j]
        # Eq 12b
        T_S[j] = ((Tr_K[j]**4 - f_theta[j] * T_C[j]**4) /
                  (1 - f_theta[j]))**0.25
        # Eq 13a
        LE_C[j] = (s[j] * Rn_C[j] + rho[j] * c_p[j] * vpd[j] / r_av[j]) /\
                  (s[j] + gama[j] * (1 + r_vw[j] / r_av[j]))
        # Eq 13b
        LE_S[j] = (T_sd[j] - T_S[j]) / (T_sd[j] - T_sw[j]) *\
                  ((s[j] * (Rn_S[j] - G[j]) + rho[j] * c_p[j] * vpd[j] / r_as[j]) /
                   (s[j] + gama[j]))

        # Estimate latent heat fluxes when no water in the top-soil is avaiable for evaporation
        j = np.logical_and(Tr_K > T_star, i)
        # Eq 14a
        T_S[j] = T_sd[j]
        # Eq 14b
        T_C[j] = ((Tr_K[j]**4 - (1 - f_theta[j]) * T_S[j]**4) /
                  f_theta[j])**0.25
        # Eq 15a
        LE_C[j] = (T_vd[j] - T_C[j]) / (T_vd[j] - T_vw[j]) *\
                  ((s[j] * Rn_C[j] + rho[j] * c_p[j] * vpd [j] / r_av[j]) /
                   (s[j] + gama[j] * (1 + r_vw[j] / r_av[j])))
        # Eq 15b
        LE_S[j] = 0

        # Estimate sensible heat fluxes as residuals
        H_C[i] = Rn_C[i] - LE_C[i]
        H_S[i] = Rn_S[i] - G[i] - LE_S[i]

        # Calculate total fluxes
        H = np.asarray(H_C + H_S)
        LE = np.asarray(LE_C + LE_S)

        # Now L can be recalculated and the difference between iterations
        # derived
        if isinstance(UseL, bool):
            L[i] = MO.calc_L(u_friction[i], T_A_K[i], rho[i], c_p[i], H[i],
                             LE[i])
            L_diff = np.asarray(np.fabs(L - L_old) / np.fabs(L_old))
            L_diff[np.isnan(L_diff)] = float('inf')
            L_old = np.array(L)
            L_old[L_old == 0] = 1e-36
            # Calculate again the friction velocity with the new stability
            # correctios
            u_friction[i] = MO.calc_u_star(u[i], z_u[i], L[i], d_0[i], z_0M[i])
            u_friction = np.asarray(np.maximum(u_friction_min, u_friction))
            u_friction_s[i] = MO.calc_u_star(u[i], z_u[i], L[i],
                                             np.zeros(d_0[i].shape),
                                             np.zeros(z_0M[i].shape) + 0.005)
            u_friction_s = np.asarray(np.maximum(u_friction_min, u_friction_s))

    return [
        flag, T_S, T_C, T_sd, T_vd, T_sw, T_vw, T_star, Ln_S, Ln_C, LE_C, H_C,
        LE_S, H_S, G, r_vw, r_vd, r_av, r_as, L, n_iterations
    ]
Пример #4
0
def METRIC(Tr_K,
           T_A_K,
           u,
           ea,
           p,
           Sn,
           L_dn,
           emis,
           z_0M,
           d_0,
           z_u,
           z_T,
           cold_pixel,
           hot_pixel,
           LE_cold,
           LE_hot=0,
           use_METRIC_resistance=True,
           calcG_params=[[1], 0.35],
           UseL=False,
           UseDEM=False):
    '''Calulates bulk fluxes using METRIC model

    Parameters
    ----------
    Tr_K : float
        Radiometric composite temperature (Kelvin).
    T_A_K : float
        Air temperature (Kelvin).
    u : float
        Wind speed above the canopy (m s-1).
    ea : float
        Water vapour pressure above the canopy (mb).
    p : float
        Atmospheric pressure (mb), use 1013 mb by default.
    S_n : float
        Solar irradiance (W m-2).
    L_dn : float
        Downwelling longwave radiation (W m-2)
    emis : float
        Surface emissivity.
    z_0M : float
        Aerodynamic surface roughness length for momentum transfer (m).
    d_0 : float
        Zero-plane displacement height (m).
    z_u : float
        Height of measurement of windspeed (m).
    z_T : float
        Height of measurement of air temperature (m).
    cold_pixel : tuple
        pixel coordinates (row, col) for the cold endmember
    hot_pixel : tuple
        pixel coordinates (row, col) for the hot endmember
    calcG_params : list[list,float or array], optional
        Method to calculate soil heat flux,parameters.

            * [[1],G_ratio]: default, estimate G as a ratio of Rn_S, default Gratio=0.35.
            * [[0],G_constant] : Use a constant G, usually use 0 to ignore the computation of G.
            * [[2,Amplitude,phase_shift,shape],time] : estimate G from Santanello and Friedl with G_param list of parameters (see :func:`~TSEB.calc_G_time_diff`).
    UseL : Optional[float]
        If included, its value will be used to force the Moning-Obukhov stability length.

    Returns
    -------
    flag : int
        Quality flag, see Appendix for description.
    Ln : float
        Net longwave radiation (W m-2)
    LE : float
        Latent heat flux (W m-2).
    H : float
        Sensible heat flux (W m-2).
    G : float
        Soil heat flux (W m-2).
    R_A : float
        Aerodynamic resistance to heat transport (s m-1).
    u_friction : float
        Friction velocity (m s-1).
    L : float
        Monin-Obuhkov length (m).
    n_iterations : int
        number of iterations until convergence of L.

    References
    ----------

    '''

    # Convert input scalars to numpy arrays and check parameters size
    Tr_K = np.asarray(Tr_K)
    (T_A_K, u, ea, p, Sn, L_dn, emis, z_0M, d_0, z_u, z_T, LE_cold, LE_hot,
     calcG_array) = map(tseb._check_default_parameter_size, [
         T_A_K, u, ea, p, Sn, L_dn, emis, z_0M, d_0, z_u, z_T, LE_cold, LE_hot,
         calcG_params[1]
     ], [Tr_K] * 14)

    # Create the output variables
    [Ln, LE, H, G, R_A,
     iterations] = [np.zeros(Tr_K.shape) + np.NaN for i in range(6)]
    flag = np.zeros(Tr_K.shape, dtype=np.byte)
    # iteration of the Monin-Obukhov length
    if isinstance(UseL, bool):
        # Initially assume stable atmospheric conditions and set variables for
        L = np.zeros(Tr_K.shape) + np.inf
        max_iterations = ITERATIONS
    else:  # We force Monin-Obukhov lenght to the provided array/value
        L = np.ones(Tr_K.shape) * UseL
        max_iterations = 1  # No iteration

    if isinstance(UseDEM, bool):
        Tr_datum = np.asarray(Tr_K)
        Ta_datum = np.asarray(T_A_K)
    else:
        gamma_w = met.calc_lapse_rate_moist(T_A_K, ea, p)
        Tr_datum = Tr_K + gamma_w * UseDEM
        Ta_datum = T_A_K + gamma_w * UseDEM

    # Calculate the general parameters
    rho = met.calc_rho(p, ea, T_A_K)  # Air density
    c_p = met.calc_c_p(p, ea)  # Heat capacity of air
    rho_datum = met.calc_rho(p, ea, Ta_datum)  # Air density

    # Calc initial Monin Obukhov variables
    u_friction = MO.calc_u_star(u, z_u, L, d_0, z_0M)
    u_friction = np.maximum(u_friction_min, u_friction)

    z_0H = res.calc_z_0H(z_0M, kB=kB)

    # Calculate Net radiation
    Ln = emis * L_dn - emis * met.calc_stephan_boltzmann(Tr_K)
    Rn = np.asarray(Sn + Ln)

    # Compute Soil Heat Flux
    i = np.ones(Rn.shape, dtype=bool)
    G[i] = tseb.calc_G([calcG_params[0], calcG_array], Rn, i)

    # Get cold and hot variables
    Rn_endmembers = np.array([Rn[cold_pixel], Rn[hot_pixel]])
    G_endmembers = np.array([G[cold_pixel], G[hot_pixel]])
    LE_endmembers = np.array([LE_cold[cold_pixel], LE_hot[hot_pixel]])
    u_friction_endmembers = np.array(
        [u_friction[cold_pixel], u_friction[hot_pixel]])
    u_endmembers = np.array([u[cold_pixel], u[hot_pixel]])
    z_u_endmembers = np.array([z_u[cold_pixel], z_u[hot_pixel]])
    Ta_datum_endmembers = np.array([Ta_datum[cold_pixel], Ta_datum[hot_pixel]])
    z_T_endmembers = np.array([z_T[cold_pixel], z_T[hot_pixel]])
    rho_datum_endmembers = np.array(
        [rho_datum[cold_pixel], rho_datum[hot_pixel]])
    c_p_endmembers = np.array([c_p[cold_pixel], c_p[hot_pixel]])
    d_0_endmembers = np.array([d_0[cold_pixel], d_0[hot_pixel]])
    z_0M_endmembers = np.array([z_0M[cold_pixel], z_0M[hot_pixel]])
    z_0H_endmembers = np.array([z_0H[cold_pixel], z_0H[hot_pixel]])

    H_endmembers = calc_H_residual(Rn_endmembers,
                                   G_endmembers,
                                   LE=LE_endmembers)

    # ==============================================================================
    #     HOT and COLD PIXEL ITERATIONS FOR MONIN-OBUKHOV LENGTH TO CONVERGE
    # ==============================================================================
    # Initially assume stable atmospheric conditions and set variables for
    L_old = np.ones(2)
    L_diff = np.ones(2) * float('inf')
    for iteration in range(max_iterations):
        if np.all(L_diff < L_thres):
            break

        if isinstance(UseL, bool):
            # Recaulculate L and the difference between iterations
            L_endmembers = MO.calc_L(u_friction_endmembers,
                                     Ta_datum_endmembers, rho_datum_endmembers,
                                     c_p_endmembers, H_endmembers,
                                     LE_endmembers)

            L_diff = np.fabs(L_endmembers - L_old) / np.fabs(L_old)
            L_old = np.array(L_endmembers)
            L_old[np.fabs(L_old) == 0] = 1e-36

            u_friction_endmembers = MO.calc_u_star(u_endmembers,
                                                   z_u_endmembers,
                                                   L_endmembers,
                                                   d_0_endmembers,
                                                   z_0M_endmembers)

            u_friction_endmembers = np.maximum(u_friction_min,
                                               u_friction_endmembers)

    # Hot and Cold aerodynamic resistances
    if use_METRIC_resistance is True:
        R_A_params = {
            "z_T": np.array([2.0, 2.0]),
            "u_friction": u_friction_endmembers,
            "L": L_endmembers,
            "d_0": np.array([0.0, 0.0]),
            "z_0H": np.array([0.1, 0.1])
        }
    else:
        R_A_params = {
            "z_T": z_T_endmembers,
            "u_friction": u_friction_endmembers,
            "L": L_endmembers,
            "d_0": d_0_endmembers,
            "z_0H": z_0H_endmembers
        }

    R_A_endmembers, _, _ = tseb.calc_resistances(tseb.KUSTAS_NORMAN_1999,
                                                 {"R_A": R_A_params})

    # Calculate the temperature gradients
    dT_endmembers = calc_dT(H_endmembers, R_A_endmembers, rho_datum_endmembers,
                            c_p_endmembers)

    # dT constants
    # Note: the equations for a and b in the Allen 2007 paper (eq 50 and 51) appear to be wrong.
    dT_b = (dT_endmembers[1] - dT_endmembers[0]) / (Tr_datum[hot_pixel] -
                                                    Tr_datum[cold_pixel])
    dT_a = dT_endmembers[1] - dT_b * Tr_datum[hot_pixel]

    # Apply the constant to the whole image
    dT = dT_a + dT_b * Tr_datum  # Allen 2007 eq. 29

    # ==============================================================================
    #     ITERATIONS FOR MONIN-OBUKHOV LENGTH AND H TO CONVERGE
    # ==============================================================================
    # Initially assume stable atmospheric conditions and set variables for
    L_queue = deque([np.ones(dT.shape)], 6)
    L_converged = np.asarray(np.zeros(Tr_K.shape)).astype(bool)
    L_diff_max = np.inf
    i = np.ones(dT.shape, dtype=bool)
    start_time = time.time()
    loop_time = time.time()

    for n_iterations in range(max_iterations):

        iterations[i] = n_iterations
        if np.all(L_converged):
            break
        current_time = time.time()
        loop_duration = current_time - loop_time
        loop_time = current_time
        total_duration = loop_time - start_time
        print(
            "Iteration: %d, non-converged pixels: %d, max L diff: %f, total time: %f, loop time: %f"
            % (n_iterations, np.sum(~L_converged[i]), L_diff_max,
               total_duration, loop_duration))

        i = ~L_converged

        if use_METRIC_resistance is True:
            R_A_params = {
                "z_T": np.array([2.0, 2.0]),
                "u_friction": u_friction[i],
                "L": L[i],
                "d_0": np.array([0.0, 0.0]),
                "z_0H": np.array([0.1, 0.1])
            }
        else:
            R_A_params = {
                "z_T": z_T[i],
                "u_friction": u_friction[i],
                "L": L[i],
                "d_0": d_0[i],
                "z_0H": z_0H[i]
            }

            R_A[i], _, _ = tseb.calc_resistances(tseb.KUSTAS_NORMAN_1999,
                                                 {"R_A": R_A_params})

        H[i] = calc_H(dT[i], rho[i], c_p[i], R_A[i])
        LE[i] = Rn[i] - G[i] - H[i]

        if isinstance(UseL, bool):
            # Now L can be recalculated and the difference between iterations
            # derived
            L[i] = MO.calc_L(u_friction[i], T_A_K[i], rho[i], c_p[i], H[i],
                             LE[i])

            u_friction[i] = MO.calc_u_star(u[i], z_u[i], L[i], d_0[i], z_0M[i])
            u_friction[i] = np.asarray(
                np.maximum(u_friction_min, u_friction[i]))

            # We check convergence against the value of L from previous iteration but as well
            # against values from 2 or 3 iterations back. This is to catch situations (not
            # infrequent) where L oscillates between 2 or 3 steady state values.
            L_new = np.array(L)
            L_new[L_new == 0] = 1e-36
            L_queue.appendleft(L_new)
            i = ~L_converged
            L_converged[i] = _L_diff(L_queue[0][i], L_queue[1][i]) < L_thres
            L_diff_max = np.max(_L_diff(L_queue[0][i], L_queue[1][i]))
            if len(L_queue) >= 4:
                i = ~L_converged
                L_converged[i] = np.logical_and(
                    _L_diff(L_queue[0][i], L_queue[2][i]) < L_thres,
                    _L_diff(L_queue[1][i], L_queue[3][i]) < L_thres)
            if len(L_queue) == 6:
                i = ~L_converged
                L_converged[i] = np.logical_and.reduce(
                    (_L_diff(L_queue[0][i], L_queue[3][i]) < L_thres,
                     _L_diff(L_queue[1][i], L_queue[4][i]) < L_thres,
                     _L_diff(L_queue[2][i], L_queue[5][i]) < L_thres))

    flag, Ln, LE, H, G, R_A, u_friction, L, iterations = map(
        np.asarray, (flag, Ln, LE, H, G, R_A, u_friction, L, iterations))

    return flag, Ln, LE, H, G, R_A, u_friction, L, iterations