Пример #1
0
 def lunar_latitude(cls, tee):
     """Return the latitude of moon (in degrees) at moment, tee.
     Adapted from "Astronomical Algorithms" by Jean Meeus,
     Willmann_Bell, Inc., 1998."""
     c = cls.julian_centuries(tee)
     cap_L_prime = cls.mean_lunar_longitude(c)
     cap_D = cls.lunar_elongation(c)
     cap_M = Solar.solar_anomaly(c)
     cap_M_prime = cls.lunar_anomaly(c)
     cap_F = cls.moon_node(c)
     cap_E = poly(c, [1, mpf(-0.002516), mpf(-0.0000074)])
     args_lunar_elongation = \
             [0, 0, 0, 2, 2, 2, 2, 0, 2, 0, 2, 2, 2, 2, 2, 2, 2, 0, 4, 0, 0, 0,
              1, 0, 0, 0, 1, 0, 4, 4, 0, 4, 2, 2, 2, 2, 0, 2, 2, 2, 2, 4, 2, 2,
              0, 2, 1, 1, 0, 2, 1, 2, 0, 4, 4, 1, 4, 1, 4, 2]
     args_solar_anomaly = \
             [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 1, -1, -1, -1, 1, 0, 1,
              0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 1,
              0, -1, -2, 0, 1, 1, 1, 1, 1, 0, -1, 1, 0, -1, 0, 0, 0, -1, -2]
     args_lunar_anomaly = \
             [0, 1, 1, 0, -1, -1, 0, 2, 1, 2, 0, -2, 1, 0, -1, 0, -1, -1, -1,
              0, 0, -1, 0, 1, 1, 0, 0, 3, 0, -1, 1, -2, 0, 2, 1, -2, 3, 2, -3,
              -1, 0, 0, 1, 0, 1, 1, 0, 0, -2, -1, 1, -2, 2, -2, -1, 1, 1, -2,
              0, 0]
     args_moon_node = \
             [1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1,
              -1, 1, 3, 1, 1, 1, -1, -1, -1, 1, -1, 1, -3, 1, -3, -1, -1, 1,
              -1, 1, -1, 1, 1, 1, 1, -1, 3, -1, -1, 1, -1, -1, 1, -1, 1, -1,
              -1, -1, -1, -1, -1, 1]
     sine_coefficients = \
             [5128122, 280602, 277693, 173237, 55413, 46271, 32573,
              17198, 9266, 8822, 8216, 4324, 4200, -3359, 2463, 2211,
              2065, -1870, 1828, -1794, -1749, -1565, -1491, -1475,
              -1410, -1344, -1335, 1107, 1021, 833, 777, 671, 607,
              596, 491, -451, 439, 422, 421, -366, -351, 331, 315,
              302, -283, -229, 223, 223, -220, -220, -185, 181,
              -177, 176, 166, -164, 132, -119, 115, 107]
     beta = ((1.0/1000000.0) *
             sigma([sine_coefficients, 
                    args_lunar_elongation,
                    args_solar_anomaly,
                    args_lunar_anomaly,
                    args_moon_node],
                   lambda v, w, x, y, z: (v *
                                          pow(cap_E, abs(x)) *
                                          sin_degrees((w * cap_D) +
                                                      (x * cap_M) +
                                                      (y * cap_M_prime) +
                                                      (z * cap_F)))))
     venus = ((175/1000000) *
              (sin_degrees(mpf(119.75) + c * mpf(131.849) + cap_F) +
               sin_degrees(mpf(119.75) + c * mpf(131.849) - cap_F)))
     flat_earth = ((-2235/1000000) *  sin_degrees(cap_L_prime) +
                   (127/1000000) * sin_degrees(cap_L_prime - cap_M_prime) +
                   (-115/1000000) * sin_degrees(cap_L_prime + cap_M_prime))
     extra = ((382/1000000) *
              sin_degrees(mpf(313.45) + c * mpf(481266.484)))
     return beta + venus + flat_earth + extra
Пример #2
0
 def lunar_longitude(cls, tee):
     """Return longitude of moon (in degrees) at moment tee.
     Adapted from "Astronomical Algorithms" by Jean Meeus,
     Willmann_Bell, Inc., 2nd ed., 1998."""
     c = cls.julian_centuries(tee)
     cap_L_prime = cls.mean_lunar_longitude(c)
     cap_D = cls.lunar_elongation(c)
     cap_M = Solar.solar_anomaly(c)
     cap_M_prime = cls.lunar_anomaly(c)
     cap_F = cls.moon_node(c)
     # see eq. 47.6 in Meeus
     cap_E = poly(c, [1, mpf(-0.002516), mpf(-0.0000074)])
     args_lunar_elongation = \
             [0, 2, 2, 0, 0, 0, 2, 2, 2, 2, 0, 1, 0, 2, 0, 0, 4, 0, 4, 2, 2, 1,
              1, 2, 2, 4, 2, 0, 2, 2, 1, 2, 0, 0, 2, 2, 2, 4, 0, 3, 2, 4, 0, 2,
              2, 2, 4, 0, 4, 1, 2, 0, 1, 3, 4, 2, 0, 1, 2]
     args_solar_anomaly = \
             [0, 0, 0, 0, 1, 0, 0, -1, 0, -1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1,
              0, 1, -1, 0, 0, 0, 1, 0, -1, 0, -2, 1, 2, -2, 0, 0, -1, 0, 0, 1,
              -1, 2, 2, 1, -1, 0, 0, -1, 0, 1, 0, 1, 0, 0, -1, 2, 1, 0]
     args_lunar_anomaly = \
             [1, -1, 0, 2, 0, 0, -2, -1, 1, 0, -1, 0, 1, 0, 1, 1, -1, 3, -2,
              -1, 0, -1, 0, 1, 2, 0, -3, -2, -1, -2, 1, 0, 2, 0, -1, 1, 0,
              -1, 2, -1, 1, -2, -1, -1, -2, 0, 1, 4, 0, -2, 0, 2, 1, -2, -3,
              2, 1, -1, 3]
     args_moon_node = \
             [0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, -2, 2, -2, 0, 0, 0, 0, 0,
              0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, -2, 2, 0, 2, 0, 0, 0, 0,
              0, 0, -2, 0, 0, 0, 0, -2, -2, 0, 0, 0, 0, 0, 0, 0]
     sine_coefficients = \
             [6288774,1274027,658314,213618,-185116,-114332,
              58793,57066,53322,45758,-40923,-34720,-30383,
              15327,-12528,10980,10675,10034,8548,-7888,
              -6766,-5163,4987,4036,3994,3861,3665,-2689,
              -2602, 2390,-2348,2236,-2120,-2069,2048,-1773,
              -1595,1215,-1110,-892,-810,759,-713,-700,691,
              596,549,537,520,-487,-399,-381,351,-340,330,
              327,-323,299,294]
     correction = ((1.0/1000000.0) *
                   sigma([sine_coefficients, args_lunar_elongation,
                          args_solar_anomaly, args_lunar_anomaly,
                          args_moon_node],
                         lambda v, w, x, y, z:
                         v * pow(cap_E, abs(x)) *
                         sin_degrees((w * cap_D) +
                                     (x * cap_M) +
                                     (y * cap_M_prime) +
                                     (z * cap_F))))
     A1 = mpf(119.75) + (c * mpf(131.849))
     venus = ((3958/1000000) * sin_degrees(A1))
     A2 = mpf(53.09) + c * mpf(479264.29)
     jupiter = ((318/1000000) * sin_degrees(A2))
     flat_earth = ((1962/1000000) * sin_degrees(cap_L_prime - cap_F))
 
     return mod(cap_L_prime + correction + venus +
                jupiter + flat_earth + cls.nutation(tee), 360)