Пример #1
0
class JaccardTestCase(unittest.TestCase):
    def setUp(self):
        self.threshold = 0.3
        self.matches_using_cart_prod = sim_match(
            table_A, table_B, tokenized_table_A, tokenized_table_B, l_attr,
            r_attr, get_jaccard_fn(), self.threshold, ['id'], ['id'])
        self.size_filter = SizeFilter(table_A, tokenized_table_A, l_attr, tok)
        self.size_filter.build_index()
        self.prefix_filter = PrefixFilter(table_A, tokenized_table_A, l_attr,
                                          tok, self.threshold, token_ordering)
        self.prefix_filter.build_index()
        self.position_filter = PositionFilter(table_A, tokenized_table_A,
                                              l_attr, tok, self.threshold,
                                              token_ordering)
        self.position_filter.build_index()
        self.suffix_filter = SuffixFilter(table_A, tokenized_table_A, l_attr,
                                          tok, self.threshold, token_ordering)

    def test_jaccard_match(self):
        # test jaccard with position filter, size filter, suffix filter
        matches = jaccard_match(
            table_A, table_B, tokenized_table_A, tokenized_table_B, l_attr,
            r_attr, self.threshold,
            [self.position_filter, self.size_filter, self.suffix_filter],
            ['id'], ['id'])
        self.assertTrue(compare_matches(self.matches_using_cart_prod, matches))

        # test jaccard with prefix filter, size filter, suffix filter
        matches = jaccard_match(
            table_A, table_B, tokenized_table_A, tokenized_table_B, l_attr,
            r_attr, self.threshold,
            [self.prefix_filter, self.size_filter, self.suffix_filter], ['id'],
            ['id'])
        self.assertTrue(compare_matches(self.matches_using_cart_prod, matches))
Пример #2
0
 def test_filter_pair(self, lstring, rstring, tokenizer, sim_measure_type,
                      threshold, allow_empty, allow_missing,
                      expected_output):
     prefix_filter = PrefixFilter(tokenizer, sim_measure_type, threshold,
                                  allow_empty, allow_missing)
     actual_output = prefix_filter.filter_pair(lstring, rstring)
     assert_equal(actual_output, expected_output)
Пример #3
0
class PrefixFilterTestCase(unittest.TestCase):
    def setUp(self):
        self.prefix_filter = PrefixFilter(A, A_tokenized, 'str', tok, 0.8,
                                          token_ordering)
        self.prefix_filter.build_index()

    def test_apply_filter(self):
        # prefix filter satisfies
        l_tokens = order_using_token_ordering(['aa', 'bb', 'cd', 'ef', 'fg'],
                                              token_ordering)
        r_tokens = order_using_token_ordering(['fg', 'cd', 'aa'],
                                              token_ordering)
        self.assertTrue(
            self.prefix_filter.apply_filter(l_tokens, r_tokens, len(l_tokens),
                                            len(r_tokens), 0.8))

        l_tokens = order_using_token_ordering(['aa', 'bb', 'cd', 'ef', 'fg'],
                                              token_ordering)
        r_tokens = order_using_token_ordering(['aa'], token_ordering)
        self.assertTrue(
            self.prefix_filter.apply_filter(l_tokens, r_tokens, len(l_tokens),
                                            len(r_tokens), 0.8))

        # prefix filter doesn't satisfy
        l_tokens = order_using_token_ordering(['aa', 'bb', 'cd', 'ef', 'fg'],
                                              token_ordering)
        r_tokens = order_using_token_ordering(['fg'], token_ordering)
        self.assertFalse(
            self.prefix_filter.apply_filter(l_tokens, r_tokens, len(l_tokens),
                                            len(r_tokens), 0.8))

        # test empty list of tokens
        l_tokens = order_using_token_ordering(['aa', 'bb', 'cd', 'ef', 'fg'],
                                              token_ordering)
        r_tokens = order_using_token_ordering([], token_ordering)
        self.assertFalse(
            self.prefix_filter.apply_filter(l_tokens, r_tokens, len(l_tokens),
                                            len(r_tokens), 0.8))
        self.assertFalse(
            self.prefix_filter.apply_filter(r_tokens, l_tokens, len(r_tokens),
                                            len(l_tokens), 0.8))

    def test_find_candidates(self):
        # test default case (presence of candidates)
        tokens = order_using_token_ordering(['aa', 'ef', 'lp'], token_ordering)
        self.assertSetEqual(
            self.prefix_filter.find_candidates(tokens, len(tokens), 0.8),
            set([0, 3]))

        # test empty set of candidates
        tokens = order_using_token_ordering(['op', 'lp', 'mp'], token_ordering)
        self.assertSetEqual(
            self.prefix_filter.find_candidates(tokens, len(tokens), 0.8),
            set())

        # test empty list of probe tokens
        tokens = order_using_token_ordering([], token_ordering)
        self.assertSetEqual(
            self.prefix_filter.find_candidates(tokens, len(tokens), 0.8),
            set())
Пример #4
0
 def setUp(self):
     self.threshold = 0.3
     self.matches_using_cart_prod = sim_match(
         table_A, table_B, tokenized_table_A, tokenized_table_B, l_attr,
         r_attr, get_jaccard_fn(), self.threshold, ['id'], ['id'])
     self.size_filter = SizeFilter(table_A, tokenized_table_A, l_attr, tok)
     self.size_filter.build_index()
     self.prefix_filter = PrefixFilter(table_A, tokenized_table_A, l_attr,
                                       tok, self.threshold, token_ordering)
     self.prefix_filter.build_index()
     self.position_filter = PositionFilter(table_A, tokenized_table_A,
                                           l_attr, tok, self.threshold,
                                           token_ordering)
     self.position_filter.build_index()
     self.suffix_filter = SuffixFilter(table_A, tokenized_table_A, l_attr,
                                       tok, self.threshold, token_ordering)
Пример #5
0
    def test_filter_tables(self, tokenizer, sim_measure_type, threshold,
                           allow_empty, allow_missing, args, expected_pairs):
        prefix_filter = PrefixFilter(tokenizer, sim_measure_type, threshold,
                                     allow_empty, allow_missing)
        actual_candset = prefix_filter.filter_tables(*args)

        expected_output_attrs = ['_id']
        l_out_prefix = self.default_l_out_prefix
        r_out_prefix = self.default_r_out_prefix

        # Check for l_out_prefix in args.
        if len(args) > 8:
            l_out_prefix = args[8]
        expected_output_attrs.append(l_out_prefix + args[2])

        # Check for r_out_prefix in args.
        if len(args) > 9:
            r_out_prefix = args[9]
        expected_output_attrs.append(r_out_prefix + args[3])

        # Check for l_out_attrs in args.
        if len(args) > 6:
            if args[6]:
                l_out_attrs = remove_redundant_attrs(args[6], args[2])
                for attr in l_out_attrs:
                    expected_output_attrs.append(l_out_prefix + attr)

        # Check for r_out_attrs in args.
        if len(args) > 7:
            if args[7]:
                r_out_attrs = remove_redundant_attrs(args[7], args[3])
                for attr in r_out_attrs:
                    expected_output_attrs.append(r_out_prefix + attr)

        # verify whether the output table has the necessary attributes.
        assert_list_equal(list(actual_candset.columns.values),
                          expected_output_attrs)

        actual_pairs = set()
        for idx, row in actual_candset.iterrows():
            actual_pairs.add(','.join((str(row[l_out_prefix + args[2]]),
                                       str(row[r_out_prefix + args[3]]))))

        # verify whether the actual pairs and the expected pairs match.
        assert_equal(len(expected_pairs), len(actual_pairs))
        common_pairs = actual_pairs.intersection(expected_pairs)
        assert_equal(len(common_pairs), len(expected_pairs))
    def test_filter_tables(self, tokenizer, sim_measure_type, threshold,
                           allow_empty, allow_missing, args, expected_pairs):
        prefix_filter = PrefixFilter(tokenizer, sim_measure_type, threshold,
                                     allow_empty, allow_missing)
        actual_candset = prefix_filter.filter_tables(*args)

        expected_output_attrs = ['_id']
        l_out_prefix = self.default_l_out_prefix
        r_out_prefix = self.default_r_out_prefix

        # Check for l_out_prefix in args.
        if len(args) > 8:
            l_out_prefix = args[8]
        expected_output_attrs.append(l_out_prefix + args[2])

        # Check for r_out_prefix in args.
        if len(args) > 9:
            r_out_prefix = args[9]
        expected_output_attrs.append(r_out_prefix + args[3])

        # Check for l_out_attrs in args.
        if len(args) > 6:
            if args[6]:
                l_out_attrs = remove_redundant_attrs(args[6], args[2])
                for attr in l_out_attrs:
                    expected_output_attrs.append(l_out_prefix + attr)

        # Check for r_out_attrs in args.
        if len(args) > 7:
            if args[7]:
                r_out_attrs = remove_redundant_attrs(args[7], args[3])
                for attr in r_out_attrs:
                    expected_output_attrs.append(r_out_prefix + attr)

        # verify whether the output table has the necessary attributes.
        assert_list_equal(list(actual_candset.columns.values),
                          expected_output_attrs)

        actual_pairs = set()
        for idx, row in actual_candset.iterrows():
            actual_pairs.add(','.join((str(row[l_out_prefix + args[2]]),
                                       str(row[r_out_prefix + args[3]]))))

        # verify whether the actual pairs and the expected pairs match.
        assert_equal(len(expected_pairs), len(actual_pairs))
        common_pairs = actual_pairs.intersection(expected_pairs)
        assert_equal(len(common_pairs), len(expected_pairs))
    def test_filter_candset(self, tokenizer, sim_measure_type, threshold, args,
                           expected_pairs):
        prefix_filter = PrefixFilter(tokenizer, sim_measure_type, threshold)
        actual_output_candset = prefix_filter.filter_candset(*args)

        # verify whether the output table has the necessary attributes.
        assert_list_equal(list(actual_output_candset.columns.values),
                          list(args[0].columns.values))

        actual_pairs = set()
        for idx, row in actual_output_candset.iterrows():
            actual_pairs.add(','.join((str(row[args[1]]), str(row[args[2]]))))

        # verify whether the actual pairs and the expected pairs match.
        assert_equal(len(expected_pairs), len(actual_pairs))
        common_pairs = actual_pairs.intersection(expected_pairs)
        assert_equal(len(common_pairs), len(expected_pairs))
    def test_filter_candset(self, tokenizer, sim_measure_type, threshold,
                            allow_empty, allow_missing, args, expected_pairs):
        prefix_filter = PrefixFilter(tokenizer, sim_measure_type, threshold,
                                     allow_empty, allow_missing)
        actual_output_candset = prefix_filter.filter_candset(*args)

        # verify whether the output table has the necessary attributes.
        assert_list_equal(list(actual_output_candset.columns.values),
                          list(args[0].columns.values))

        actual_pairs = set()
        for idx, row in actual_output_candset.iterrows():
            actual_pairs.add(','.join((str(row[args[1]]), str(row[args[2]]))))

        # verify whether the actual pairs and the expected pairs match.
        assert_equal(len(expected_pairs), len(actual_pairs))
        common_pairs = actual_pairs.intersection(expected_pairs)
        assert_equal(len(common_pairs), len(expected_pairs))
def _edit_distance_join_split(ltable_list, rtable_list,
                              l_columns, r_columns,
                              l_key_attr, r_key_attr,
                              l_join_attr, r_join_attr,
                              tokenizer, threshold, comp_op,
                              l_out_attrs, r_out_attrs,
                              l_out_prefix, r_out_prefix,
                              out_sim_score, show_progress):
    """Perform edit distance join for a split of ltable and rtable"""
    # find column indices of key attr, join attr and output attrs in ltable
    l_key_attr_index = l_columns.index(l_key_attr)
    l_join_attr_index = l_columns.index(l_join_attr)
    l_out_attrs_indices = find_output_attribute_indices(l_columns, l_out_attrs)

    # find column indices of key attr, join attr and output attrs in rtable
    r_key_attr_index = r_columns.index(r_key_attr)
    r_join_attr_index = r_columns.index(r_join_attr)
    r_out_attrs_indices = find_output_attribute_indices(r_columns, r_out_attrs)

    sim_measure_type = 'EDIT_DISTANCE'
    # generate token ordering using tokens in l_join_attr
    # and r_join_attr
    token_ordering = gen_token_ordering_for_tables(
                         [ltable_list, rtable_list],
                         [l_join_attr_index, r_join_attr_index],
                         tokenizer, sim_measure_type)

    # cache l_join_attr lengths
    l_join_attr_list = []
    for row in ltable_list:
        l_join_attr_list.append(len(row[l_join_attr_index]))

    # Build prefix index on l_join_attr
    prefix_index = PrefixIndex(ltable_list, l_join_attr_index,
                               tokenizer, sim_measure_type, threshold,
                               token_ordering)
    prefix_index.build(False)

    prefix_filter = PrefixFilter(tokenizer, sim_measure_type, threshold)

    comp_fn = COMP_OP_MAP[comp_op]
    sim_fn = get_sim_function(sim_measure_type)

    output_rows = []
    has_output_attributes = (l_out_attrs is not None or
                             r_out_attrs is not None)

    if show_progress:
        prog_bar = pyprind.ProgBar(len(rtable_list))

    for r_row in rtable_list:
        r_string = r_row[r_join_attr_index]
        r_len = len(r_string)

        r_ordered_tokens = order_using_token_ordering(
                tokenizer.tokenize(r_string), token_ordering)

        # obtain candidates by applying prefix filter. 
        candidates = prefix_filter.find_candidates(r_ordered_tokens,
                                                   prefix_index)

        for cand in candidates:
            if r_len - threshold <= l_join_attr_list[cand] <= r_len + threshold:
                l_row = ltable_list[cand]

                # compute the actual edit distance                           
                edit_dist = sim_fn(l_row[l_join_attr_index], r_string)

                if comp_fn(edit_dist, threshold):
                    if has_output_attributes:
                        output_row = get_output_row_from_tables(
                                         l_row, r_row,
                                         l_key_attr_index, r_key_attr_index,
                                         l_out_attrs_indices,
                                         r_out_attrs_indices)
                    else:
                        output_row = [l_row[l_key_attr_index],
                                      r_row[r_key_attr_index]]

                    # if out_sim_score flag is set, append the edit distance 
                    # score to the output record.
                    if out_sim_score:
                        output_row.append(edit_dist)

                    output_rows.append(output_row)

        if show_progress:
            prog_bar.update()

    output_header = get_output_header_from_tables(
                        l_key_attr, r_key_attr,
                        l_out_attrs, r_out_attrs,
                        l_out_prefix, r_out_prefix)
    if out_sim_score:
        output_header.append("_sim_score")

    # generate a dataframe from the list of output rows
    output_table = pd.DataFrame(output_rows, columns=output_header)
    return output_table
Пример #10
0
 def test_invalid_threshold(self):
     prefix_filter = PrefixFilter(self.tokenizer, self.sim_measure_type,
                                  1.2)
Пример #11
0
 def test_invalid_sim_measure_type(self):
     prefix_filter = PrefixFilter(self.tokenizer, 'INVALID_TYPE',
                                  self.threshold)
Пример #12
0
 def test_invalid_tokenizer_for_edit_distance(self):
     prefix_filter = PrefixFilter(self.tokenizer, 'EDIT_DISTANCE', 2)
Пример #13
0
 def test_invalid_r_out_attr(self):
     prefix_filter = PrefixFilter(self.tokenizer, self.sim_measure_type,
                                  self.threshold)
     prefix_filter.filter_tables(self.A, self.B, 'A.id', 'B.id', 'A.attr',
                                 'B.attr', ['A.attr'], ['B.invalid_attr'])
Пример #14
0
 def test_numeric_r_filter_attr(self):
     prefix_filter = PrefixFilter(self.tokenizer, self.sim_measure_type,
                                  self.threshold)
     prefix_filter.filter_tables(self.A, self.B, 'A.id', 'B.id', 'A.attr',
                                 'B.int_attr')
Пример #15
0
 def test_invalid_rtable(self):
     prefix_filter = PrefixFilter(self.tokenizer, self.sim_measure_type,
                                  self.threshold)
     prefix_filter.filter_tables(self.A, [], 'A.id', 'B.id', 'A.attr',
                                 'B.attr')
Пример #16
0
def _edit_distance_join_split(ltable_list, rtable_list, l_columns, r_columns,
                              l_key_attr, r_key_attr, l_join_attr, r_join_attr,
                              tokenizer, threshold, comp_op, l_out_attrs,
                              r_out_attrs, l_out_prefix, r_out_prefix,
                              out_sim_score, show_progress):
    """Perform edit distance join for a split of ltable and rtable"""
    # find column indices of key attr, join attr and output attrs in ltable
    l_key_attr_index = l_columns.index(l_key_attr)
    l_join_attr_index = l_columns.index(l_join_attr)
    l_out_attrs_indices = find_output_attribute_indices(l_columns, l_out_attrs)

    # find column indices of key attr, join attr and output attrs in rtable
    r_key_attr_index = r_columns.index(r_key_attr)
    r_join_attr_index = r_columns.index(r_join_attr)
    r_out_attrs_indices = find_output_attribute_indices(r_columns, r_out_attrs)

    sim_measure_type = 'EDIT_DISTANCE'
    # generate token ordering using tokens in l_join_attr
    # and r_join_attr
    token_ordering = gen_token_ordering_for_tables(
        [ltable_list, rtable_list], [l_join_attr_index, r_join_attr_index],
        tokenizer, sim_measure_type)

    # cache l_join_attr lengths
    l_join_attr_list = []
    for row in ltable_list:
        l_join_attr_list.append(len(row[l_join_attr_index]))

    # Build prefix index on l_join_attr
    prefix_index = PrefixIndex(ltable_list, l_join_attr_index, tokenizer,
                               sim_measure_type, threshold, token_ordering)
    prefix_index.build(False)

    prefix_filter = PrefixFilter(tokenizer, sim_measure_type, threshold)

    comp_fn = COMP_OP_MAP[comp_op]
    sim_fn = get_sim_function(sim_measure_type)

    output_rows = []
    has_output_attributes = (l_out_attrs is not None
                             or r_out_attrs is not None)

    if show_progress:
        prog_bar = pyprind.ProgBar(len(rtable_list))

    for r_row in rtable_list:
        r_string = r_row[r_join_attr_index]
        r_len = len(r_string)

        r_ordered_tokens = order_using_token_ordering(
            tokenizer.tokenize(r_string), token_ordering)

        # obtain candidates by applying prefix filter.
        candidates = prefix_filter.find_candidates(r_ordered_tokens,
                                                   prefix_index)

        for cand in candidates:
            if r_len - threshold <= l_join_attr_list[cand] <= r_len + threshold:
                l_row = ltable_list[cand]

                # compute the actual edit distance
                edit_dist = sim_fn(l_row[l_join_attr_index], r_string)

                if comp_fn(edit_dist, threshold):
                    if has_output_attributes:
                        output_row = get_output_row_from_tables(
                            l_row, r_row, l_key_attr_index, r_key_attr_index,
                            l_out_attrs_indices, r_out_attrs_indices)
                    else:
                        output_row = [
                            l_row[l_key_attr_index], r_row[r_key_attr_index]
                        ]

                    # if out_sim_score flag is set, append the edit distance
                    # score to the output record.
                    if out_sim_score:
                        output_row.append(edit_dist)

                    output_rows.append(output_row)

        if show_progress:
            prog_bar.update()

    output_header = get_output_header_from_tables(l_key_attr, r_key_attr,
                                                  l_out_attrs, r_out_attrs,
                                                  l_out_prefix, r_out_prefix)
    if out_sim_score:
        output_header.append("_sim_score")

    # generate a dataframe from the list of output rows
    output_table = pd.DataFrame(output_rows, columns=output_header)
    return output_table
 def test_invalid_rtable(self):
     prefix_filter = PrefixFilter(self.tokenizer, self.sim_measure_type,
                                  self.threshold)
     prefix_filter.filter_tables(self.A, [], 'A.id', 'B.id',
                                 'A.attr', 'B.attr')
 def test_filter_pair(self, lstring, rstring, tokenizer, sim_measure_type,
                      threshold, allow_empty, allow_missing, expected_output):
     prefix_filter = PrefixFilter(tokenizer, sim_measure_type, threshold,
                                  allow_empty, allow_missing)
     actual_output = prefix_filter.filter_pair(lstring, rstring)
     assert_equal(actual_output, expected_output)
 def test_numeric_r_filter_attr(self):                                       
     prefix_filter = PrefixFilter(self.tokenizer, self.sim_measure_type,     
                                  self.threshold)                            
     prefix_filter.filter_tables(self.A, self.B, 'A.id', 'B.id',             
                                 'A.attr', 'B.int_attr')
Пример #20
0
def _edit_dist_join_split(ltable, rtable,
                          l_key_attr, r_key_attr,
                          l_join_attr, r_join_attr,
                          tokenizer,
                          threshold,
                          l_out_attrs, r_out_attrs,
                          l_out_prefix, r_out_prefix,
                          out_sim_score):
    # find column indices of key attr, join attr and output attrs in ltable
    l_columns = list(ltable.columns.values)
    l_key_attr_index = l_columns.index(l_key_attr)
    l_join_attr_index = l_columns.index(l_join_attr)
    l_out_attrs_indices = find_output_attribute_indices(l_columns, l_out_attrs)

    # find column indices of key attr, join attr and output attrs in rtable
    r_columns = list(rtable.columns.values)
    r_key_attr_index = r_columns.index(r_key_attr)
    r_join_attr_index = r_columns.index(r_join_attr)
    r_out_attrs_indices = find_output_attribute_indices(r_columns, r_out_attrs)

    # build a dictionary on ltable
    ltable_dict = build_dict_from_table(ltable, l_key_attr_index,
                                        l_join_attr_index)

    # build a dictionary on rtable
    rtable_dict = build_dict_from_table(rtable, r_key_attr_index,
                                        r_join_attr_index)

    sim_measure_type = 'EDIT_DISTANCE'
    # generate token ordering using tokens in l_join_attr
    # and r_join_attr
    token_ordering = gen_token_ordering_for_tables(
                         [ltable_dict.values(),
                          rtable_dict.values()],
                         [l_join_attr_index,
                          r_join_attr_index],
                         tokenizer, sim_measure_type)

    # build a dictionary of l_join_attr lengths
    l_join_attr_dict = {}
    for row in ltable_dict.values():
        l_join_attr_dict[row[l_key_attr_index]] = len(str(
                                                      row[l_join_attr_index]))

    # Build prefix index on l_join_attr
    prefix_index = PrefixIndex(ltable_dict.values(),
                               l_key_attr_index, l_join_attr_index,
                               tokenizer, sim_measure_type, threshold,
                               token_ordering)
    prefix_index.build()

    prefix_filter = PrefixFilter(tokenizer, sim_measure_type, threshold)
    sim_fn = get_sim_function(sim_measure_type)
    output_rows = []
    has_output_attributes = (l_out_attrs is not None or
                             r_out_attrs is not None)
    prog_bar = pyprind.ProgBar(len(rtable_dict.keys()))

    for r_row in rtable_dict.values():
        r_id = r_row[r_key_attr_index]
        r_string = str(r_row[r_join_attr_index])
        r_len = len(r_string)
        # check for empty string
        if not r_string:
            continue
        r_join_attr_tokens = tokenize(r_string, tokenizer, sim_measure_type)
        r_ordered_tokens = order_using_token_ordering(r_join_attr_tokens,
                                                      token_ordering)
        candidates = find_candidates_prefix_filter(
                         r_ordered_tokens, len(r_ordered_tokens),
                         prefix_filter, prefix_index) 
        for cand in candidates:
            if r_len - threshold <= l_join_attr_dict[cand] <= r_len + threshold:
                edit_dist = sim_fn(str(ltable_dict[cand][l_join_attr_index]),
                                   r_string)
                if edit_dist <= threshold:
                    if has_output_attributes:
                        output_row = get_output_row_from_tables(
                                         ltable_dict[cand], r_row,
                                         cand, r_id,
                                         l_out_attrs_indices,
                                         r_out_attrs_indices)
                        if out_sim_score:
                            output_row.append(edit_dist)
                        output_rows.append(output_row)
                    else:
                        output_row = [cand, r_id]
                        if out_sim_score:
                            output_row.append(edit_dist)
                        output_rows.append(output_row)

        prog_bar.update()

    output_header = get_output_header_from_tables(
                        l_key_attr, r_key_attr,
                        l_out_attrs, r_out_attrs,
                        l_out_prefix, r_out_prefix)
    if out_sim_score:
        output_header.append("_sim_score")

    # generate a dataframe from the list of output rows
    output_table = pd.DataFrame(output_rows, columns=output_header)
    return output_table
Пример #21
0
 def setUp(self):
     self.prefix_filter = PrefixFilter(A, A_tokenized, 'str', tok, 0.8,
                                       token_ordering)
     self.prefix_filter.build_index()
 def test_invalid_r_out_attr(self):
     prefix_filter = PrefixFilter(self.tokenizer, self.sim_measure_type,
                                  self.threshold)
     prefix_filter.filter_tables(self.A, self.B, 'A.id', 'B.id',
                                 'A.attr', 'B.attr',
                                 ['A.attr'], ['B.invalid_attr'])