for var in odvars:
    print(var)
    data = reader.read_var(var, start=start, ts_type=freq)
    if not data.ts_type == 'monthly':
        data = data.resample_time('monthly')

    loaded.append(data)

print('Regrid median SS to Noresm res.')
first = loaded[0]
medss = medss.regrid(first)
medss.time.units = first.time.units
medss.time.points = first.time.points
medss.time.attributes = first.time.attributes
medss.time.standard_name = first.time.standard_name

for data in loaded:
    print('Adding', data.var_name)
    added = pya.io.aux_read_cubes.add_cubes(medss.cube, data.cube)
    medss = pya.GriddedData(added)

medss.var_name = 'od550aer'

medss.cube.attributes = {}
medss.cube.attributes['data_id'] = OUT_ID
medss.cube.attributes['ts_type'] = 'monthly'

print(medss.time_stamps())
medss.to_netcdf(outdir, vert_code='Column')
Пример #2
0
                           "data settings. These will be unified using the "
                           "metadata dictionary of the first cube "
                           "(otherwise the method concatenate of the iris "
                           "package won't work)".format(var_name))
            for cube in cubes:
                cube.metadata = meta_init
                
    #now put the CubeList together and form one cube
    #1st equalise the cubes (remove non common attributes)
    equalise_attributes(cubes)
    #unify time units
    iris.util.unify_time_units(cubes)
    
    #now concatenate the cube list to one cube
    cubes_concat = iris._concatenate.concatenate(cubes, error_on_mismatch)
    
    return cubes_concat[0]

if __name__== "__main__":
    import pyaerocom as pya
    
    ddir = '/lustre/storeA/project/aerocom/aerocom-users-database/SATELLITE-DATA/CALIOP3/renamed/'
    f1 = 'aerocom.CALIOP3.monthly.ec5323Ddust.2006.nc'
    fconv = pya.io.FileConventionRead(from_file=f1)
    cube = load_cube_custom(ddir + f1)
    print(cube)
    
    data = pya.GriddedData(cube)
    print(data.start)
    print(data.stop)
    print(data)
Пример #3
0
            'standard_name'] = 'atmosphere_hybrid_sigma_pressure_coordinate'

    if ds.lev.data[0] == ds.lev.data[1]:
        OK = False
        issues.append('Level values not strictly monotonic')
        lev_vals = np.arange(len(ds.lev.data))
        ds.lev.data = lev_vals

    if not OK:
        file = file.split('.nc')[0] + '_CORR.nc'
        ds.to_netcdf(file)
    return (file, OK, issues)


for file in glob.glob('*CORR.nc'):
    os.remove(file)

file = glob.glob('aerocom3_Oslo*monthly.nc')[0]
print(file)

(file, OK, issues) = check_file_okay(file)

d = pya.GriddedData(file, var_name='ec550aer')
print(d)

if len(issues) > 0:
    print('------------------------------------------')
    print('Detected following issues:')
for issue in issues:
    print(issue)
Пример #4
0
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon May  7 13:35:07 2018

@author: jonasg
"""
import pyaerocom
from pandas import Timestamp
import numpy as np
if __name__ == "__main__":

    data = pyaerocom.GriddedData()
    data._init_testdata_default()

    start = Timestamp("2018-1-22")
    stop = Timestamp("2018-2-5")

    lons = np.linspace(-10, 30, 20)
    lats = np.linspace(40, 80, 20)
    data = data.crop(lon_range=(lons[0], lons[-1]),
                     lat_range=(lats[0], lats[-1]),
                     time_range=(start, stop))

    fig = data.quickplot_map()
    fig.suptitle("CROPPED")

    sample_points = [("longitude", lons), ("latitude", lats)]

    coords_avail = data.coords_order
    d21 = iris.load(d2 + f21)
    d22 = iris.load(d2 + f22)
    d23 = iris.load(d2 + f23)

    data = [d11, d12, d21, d22, d23]

    #reader = pya.io.ReadGridded('TM5_AP3-INSITU')
    #dat = reader.read_var('vmrch4')

    for i, cubes in enumerate(data):
        print('At iter {}'.format(i))
        for d in cubes:
            print('\n')
            print(d.var_name)
            print(d.shape)
            print(d.ndim)
            print([c.standard_name for c in d.dim_coords])
            print([c.var_name for c in d.dim_coords])

        print('\n\n')

    print(d11)

    ds11 = xarray.open_dataset(d1 + f11)
    ds21 = xarray.open_dataset(d2 + f21)

    data11 = pya.GriddedData(d1 + f11, var_name='abs5503Daer')
    data21 = pya.GriddedData(d2 + f21, var_name='vmrch4')

    print(ds21)
Пример #6
0
                for var_name, vc in zip(varlist, vclist):
                    outname = pya.io.helpers.aerocom_savename(data_id,
                                                              var_name,
                                                              vc, year,
                                                              TS_TYPE)

                    models = USE_MODELS
                    if var_name in match_models:
                        if year in match_models[var_name]:
                            _year = match_models[var_name][year]
                            outname_other = outname.replace(str(year), str(_year))
                            fp = os.path.join(OUT_DIR, outname_other)
                            if not os.path.exists(fp):
                                raise ValueError(
                                    f'Please process {_year} before {year}')
                            data = pya.GriddedData(fp)
                            models = data.metadata['from_models']


                    pya.const.print_log.info(f'\nPROCESSING {outname}\n')
                    logfile.write('\n\n{}'.format(var_name))

                    if os.path.exists(os.path.join(OUT_DIR, outname)) and reanalyse_existing==False:
                        pya.const.print_log.info('exists... -> skipping.')
                        logfile.write(': SKIPPED')
                        continue

                    surf = vc=='Surface'

                    comment = (f'AeroCom {avg_how} model data for variable '
                               f'{var_name}')
Пример #7
0
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Apr 20 08:49:37 2018

@author: jonasg
"""

from matplotlib.colors import LogNorm
import pyaerocom

if __name__ == "__main__":

    data = pyaerocom.GriddedData()._init_testdata_default()
Пример #8
0
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Feb 11 09:55:03 2020

@author: jonasg
"""
import pyaerocom as pya
import matplotlib.pyplot as plt

plt.close('all')

data_dir = '/lustre/storeA/project/fou/kl/CAMS61/CAMS_2018/EMEP/'

data_file = 'EMEP_20180101_O3_0H24H.nc'

data = pya.GriddedData(data_dir + data_file)

data = data.extract_surface_level()

data.metadata['ts_type'] = None

# THIS WORKS NOW
data.quickplot_map()

# NOW CHECK PALEO DATE
data.change_base_year(901)

data.quickplot_map()

print("ALL GOOD")
Пример #9
0
if __name__ == '__main__':
    
    pya.change_verbosity('critical')
     
    obs_reader = pya.io.ReadUngridded()
    obs = obs_reader.read(OBS_ID, OBS_VARS)
    
    model_reader = pya.io.ReadGridded(MODEL_ID_3D)
    model = model_reader.read_var(MODEL_VAR, start=YEAR)
    print(obs)
    print(model)
    
    model_at_stats = model.compute_at_stations_file(out_dir='out', 
                                                    obs_data=obs)
    
    model_reload = pya.GriddedData(model_at_stats)
    
    
    coll1 = pya.colocation.colocate_gridded_ungridded_2D(model,
                                                          obs, 
                                                           'monthly',
                                                          var_ref='scatc550aer',
                                                          vert_scheme='surface')
    
    coll2 = pya.colocation.colocate_gridded_ungridded_2D(model_reload,
                                                          obs, 
                                                           'monthly',
                                                          var_ref='scatc550aer',
                                                          vert_scheme='surface')
    
    coll1.plot_scatter()