Пример #1
0
def test_aggregate_region_with_other_method(simple_df, variable, data):
    # use other method (max) both as string and passing the function
    _df = data.copy()
    if simple_df.time_col == 'time':
        _df.year = _df.year.replace(DTS_MAPPING)
        _df.rename({'year': 'time'}, axis='columns', inplace=True)
    exp = IamDataFrame(_df).filter(region='World')
    for m in ['max', np.max]:
        assert_frame_equal(simple_df.aggregate_region(variable, method=m), exp)
Пример #2
0
def test_aggregate_region(simple_df, variable):
    # check that `variable` is a a direct sum across regions
    exp = simple_df.filter(variable=variable, region='World')
    assert_frame_equal(simple_df.aggregate_region(variable), exp)

    # check custom `region` (will include `World`, so double-count values)
    foo = exp.rename(region={'World': 'foo'})
    foo.data.value = foo.data.value * 2
    assert_frame_equal(simple_df.aggregate_region(variable, region='foo'), foo)
Пример #3
0
def test_aggregate(simple_df, variable, data):
    # check that `variable` is a a direct sum and matches given total
    exp = simple_df.filter(variable=variable)
    assert_frame_equal(simple_df.aggregate(variable), exp)

    # use other method (max) both as string and passing the function
    _df = data.copy()
    if simple_df.time_col == 'time':
        _df.year = _df.year.replace(DTS_MAPPING)
        _df.rename({'year': 'time'}, axis='columns', inplace=True)
    exp = IamDataFrame(_df)
    for m in ['max', np.max]:
        assert_frame_equal(simple_df.aggregate(variable, method=m), exp)
Пример #4
0
def test_downscale_region(simple_df, variable):
    simple_df.set_meta([1], name='test')
    regions = ['reg_a', 'reg_b']

    # return as new IamDataFrame
    obs = simple_df.downscale_region(variable, proxy='Population')
    exp = simple_df.filter(variable=variable, region=regions)
    assert_frame_equal(exp, obs)

    # append to `self` (after removing to-be-downscaled timeseries)
    inplace = simple_df.filter(variable=variable, region=regions, keep=False)
    inplace.downscale_region(variable, proxy='Population', append=True)
    assert_frame_equal(inplace, simple_df)
Пример #5
0
def test_aggregate_region_with_weights(simple_df):
    # carbon price shouldn't be summed but be weighted by emissions
    v = 'Price|Carbon'
    w = 'Emissions|CO2'
    assert simple_df.check_aggregate_region(v) is not None
    assert simple_df.check_aggregate_region(v, weight=w) is None

    exp = simple_df.filter(variable=v, region='World')
    assert_frame_equal(simple_df.aggregate_region(v, weight=w), exp)

    # inconsistent index of variable and weight raises an error
    _df = simple_df.filter(variable=w, region='reg_b', keep=False)
    pytest.raises(ValueError, _df.aggregate_region, v, weight=w)

    # using weight and method other than 'sum' raises an error
    pytest.raises(ValueError, simple_df.aggregate_region, v, method='max',
                  weight='bar')
Пример #6
0
def test_aggregate_region_with_subregions(simple_df, variable):
    # check that custom `subregions` works (assumes only `reg_a` is in `World`)
    exp = (
        simple_df.filter(variable=variable, region='reg_a')
        .rename(region={'reg_a': 'World'})
    )
    obs = simple_df.aggregate_region(variable, subregions='reg_a')
    assert_frame_equal(obs, exp)

    # check that both custom `region` and `subregions` work
    foo = exp.rename(region={'World': 'foo'})
    obs = simple_df.aggregate_region(variable, region='foo',
                                     subregions='reg_a')
    assert_frame_equal(obs, foo)

    # check that invalid list of subregions returns empty
    assert simple_df.aggregate_region(variable, subregions=['reg_c']).empty
Пример #7
0
def test_aggregate_region_append(simple_df, variable):
    # remove `variable`, do aggregate and append, check equality to original
    _df = simple_df.filter(variable=variable, region='World', keep=False)
    _df.aggregate_region(variable, append=True)
    assert_frame_equal(_df, simple_df)