Пример #1
0
    def test_aniblastall_concordance(self):
        """ANIblastall results concordant with JSpecies."""
        # Perform ANIblastall on the input directory contents
        outdir = os.path.join(self.outdir, "blastall")
        os.makedirs(outdir, exist_ok=True)
        fragfiles, fraglengths = anib.fragment_fasta_files(
            self.infiles, outdir, self.fragsize
        )
        jobgraph = anib.make_job_graph(
            self.infiles, fragfiles, anib.make_blastcmd_builder("ANIblastall", outdir)
        )
        assert_equal(0, run_mp.run_dependency_graph(jobgraph))
        results = anib.process_blast(
            outdir, self.orglengths, fraglengths, mode="ANIblastall"
        )
        result_pid = results.percentage_identity
        result_pid.to_csv(os.path.join(self.outdir, "pyani_aniblastall.tab"), sep="\t")

        # Compare JSpecies output to results
        result_pid = result_pid.sort_index(axis=0).sort_index(axis=1) * 100.0
        diffmat = result_pid.values - self.target["ANIb"].values
        aniblastall_diff = pd.DataFrame(
            diffmat, index=result_pid.index, columns=result_pid.columns
        )
        aniblastall_diff.to_csv(
            os.path.join(self.outdir, "pyani_aniblastall_diff.tab"), sep="\t"
        )
        assert_less(aniblastall_diff.abs().values.max(), self.tolerance["ANIblastall"])
Пример #2
0
    def test_aniblastall_concordance(self):
        """Check ANIblastall results are concordant with JSpecies."""
        # Perform ANIblastall on the input directory contents
        outdir = self.outdir / "blastall"
        outdir.mkdir(exist_ok=True)
        fragfiles, fraglengths = anib.fragment_fasta_files(
            self.infiles, outdir, self.fragsize)
        jobgraph = anib.make_job_graph(
            self.infiles, fragfiles,
            anib.make_blastcmd_builder("ANIblastall", outdir))
        self.assertEqual(0, run_mp.run_dependency_graph(jobgraph))
        results = anib.process_blast(outdir,
                                     self.orglengths,
                                     fraglengths,
                                     mode="ANIblastall")
        result_pid = results.percentage_identity
        result_pid.to_csv(self.outdir / "pyani_aniblastall.tab", sep="\t")

        # Compare JSpecies output to results
        result_pid = result_pid.sort_index(axis=0).sort_index(axis=1) * 100.0
        diffmat = result_pid.values - self.target["ANIb"].values
        aniblastall_diff = pd.DataFrame(diffmat,
                                        index=result_pid.index,
                                        columns=result_pid.columns)
        aniblastall_diff.to_csv(self.outdir / "pyani_aniblastall_diff.tab",
                                sep="\t")
        self.assertLess(aniblastall_diff.abs().values.max(),
                        self.tolerance["ANIblastall"])
Пример #3
0
def test_aniblastall_concordance(
    paths_concordance_fna,
    path_concordance_jspecies,
    tolerance_anib_hi,
    fragment_length,
    tmp_path,
):
    """Check ANIblastall results are concordant with JSpecies."""
    # Get lengths of input genomes
    orglengths = pyani_files.get_sequence_lengths(paths_concordance_fna)

    # Perform ANIblastall on the input directory contents
    fragfiles, fraglengths = anib.fragment_fasta_files(
        paths_concordance_fna, tmp_path, fragment_length
    )
    jobgraph = anib.make_job_graph(
        paths_concordance_fna,
        fragfiles,
        anib.make_blastcmd_builder("ANIblastall", tmp_path),
    )
    assert 0 == run_mp.run_dependency_graph(jobgraph)  # Jobs must run correctly

    # Process BLAST output
    result_pid = anib.process_blast(
        tmp_path, orglengths, fraglengths, mode="ANIblastall"
    ).percentage_identity

    # Compare JSpecies output to results
    result_pid = (result_pid.sort_index(axis=0).sort_index(axis=1) * 100.0).values
    tgt_pid = parse_jspecies(path_concordance_jspecies)["ANIb"].values
    assert result_pid - tgt_pid == pytest.approx(0, abs=tolerance_anib_hi)
Пример #4
0
def test_aniblastall_concordance():
    """Test concordance of ANIblastall method with JSpecies output."""
    # Make/check output directory
    mode = "ANIblastall"
    outdirname = delete_and_remake_outdir(mode)

    # Get dataframes of JSpecies output
    aniblastall_jspecies = parse_table(JSPECIES_OUTFILE, 'ANIb')

    # Identify our input files, and the total lengths of each organism seq
    infiles = pyani_files.get_fasta_files(INDIRNAME)
    org_lengths = pyani_files.get_sequence_lengths(infiles)

    # Test ANIblastall concordance:
    # Make fragments
    fragfiles, fraglengths = anib.fragment_fasta_files(infiles, outdirname,
                                                       pyani_config.FRAGSIZE)

    # Build jobgraph
    jobgraph = anib.make_job_graph(
        infiles, fragfiles,
        anib.make_blastcmd_builder("ANIblastall", outdirname))
    print("\nJobgraph:\n", jobgraph)
    print("\nJob 0:\n", jobgraph[0].script)

    # Run jobgraph with multiprocessing
    run_dependency_graph(jobgraph)
    print("Ran multiprocessing jobs")

    # Process BLAST; the pid data is in anib_data[1]
    aniblastall_data = anib.process_blast(outdirname,
                                          org_lengths,
                                          fraglengths,
                                          mode="ANIblastall")
    aniblastall_pid = \
        aniblastall_data.percentage_identity.sort_index(axis=0).\
        sort_index(axis=1) * 100.

    index, columns = aniblastall_pid.index, aniblastall_pid.columns
    diffmat = aniblastall_pid.as_matrix() - aniblastall_jspecies.as_matrix()
    aniblastall_diff = pd.DataFrame(diffmat, index=index, columns=columns)

    # Write dataframes to file, for reference
    aniblastall_pid.to_csv(os.path.join(outdirname, 'ANIblastall_pid.tab'),
                           sep='\t')
    aniblastall_jspecies.to_csv(os.path.join(outdirname,
                                             'ANIblastall_jspecies.tab'),
                                sep='\t')
    aniblastall_diff.to_csv(os.path.join(outdirname, 'ANIblastall_diff.tab'),
                            sep='\t')
    print("ANIblastall concordance test output placed in %s" % outdirname)
    print("ANIblastall PID:\n", aniblastall_pid)
    print("ANIblastall JSpecies:\n", aniblastall_jspecies)
    print("ANIblastall diff:\n", aniblastall_diff)

    # We'd like the absolute difference reported to be < ANIBLASTALL_THRESHOLD
    max_diff = aniblastall_diff.abs().values.max()
    print("Maximum difference for ANIblastall: %e" % max_diff)
    assert_less(max_diff, ANIB_THRESHOLD)
Пример #5
0
def test_anib_concordance():
    """Test concordance of ANIb method with JSpecies output.

    This may take some time. Please be patient.
    """
    # Make/check output directory
    mode = "ANIb"
    outdirname = make_outdir(mode)

    # Get dataframes of JSpecies output
    anib_jspecies = parse_table(JSPECIES_OUTFILE, 'ANIb')

    # Identify our input files, and the total lengths of each organism seq
    infiles = pyani_files.get_fasta_files(INDIRNAME)
    org_lengths = pyani_files.get_sequence_lengths(infiles)

    # Test ANIb concordance:
    # Make fragments
    fragfiles, fraglengths = anib.fragment_FASTA_files(infiles, outdirname,
                                                       pyani_config.FRAGSIZE)
    # Build databases
    cmdlist = anib.generate_blastdb_commands(infiles, outdirname,
                                             pyani_config.MAKEBLASTDB_DEFAULT,
                                             mode="ANIb")
    multiprocessing_run(cmdlist)
    # Run pairwise BLASTN
    cmdlist = anib.generate_blastn_commands(fragfiles, outdirname,
                                            pyani_config.BLASTN_DEFAULT,
                                            mode="ANIb")
    multiprocessing_run(cmdlist, verbose=False)
    # Process BLAST; the pid data is in anib_data[1]
    anib_data = anib.process_blast(outdirname, org_lengths, fraglengths,
                                   mode="ANIb")
    anib_pid = anib_data[1].sort(axis=0).sort(axis=1) * 100.

    index, columns = anib_pid.index, anib_pid.columns
    diffmat = anib_pid.as_matrix() - anib_jspecies.as_matrix()
    anib_diff = pd.DataFrame(diffmat, index=index, columns=columns)

    # Write dataframes to file, for reference
    anib_pid.to_csv(os.path.join(outdirname,
                                'ANIb_pid.tab'),
                   sep='\t')
    anib_jspecies.to_csv(os.path.join(outdirname,
                                      'ANIb_jspecies.tab'),
                         sep='\t')
    anib_diff.to_csv(os.path.join(outdirname,
                                  'ANIb_diff.tab'),
                     sep='\t')
    print "ANIb concordance test output placed in %s" % outdirname
    print anib_pid, anib_jspecies, anib_diff

    # We'd like the absolute difference reported to be < ANIB_THRESHOLD
    max_diff = anib_diff.abs().values.max()
    print "Maximum difference for ANIb: %e" % max_diff
    assert_less(max_diff, ANIB_THRESHOLD)
Пример #6
0
def test_anib_concordance():
    """Test concordance of ANIb method with JSpecies output.

    This may take some time. Please be patient.
    """
    # Make/check output directory
    mode = "ANIb"
    outdirname = make_outdir(mode)

    # Get dataframes of JSpecies output
    anib_jspecies = parse_table(JSPECIES_OUTFILE, 'ANIb')

    # Identify our input files, and the total lengths of each organism seq
    infiles = pyani_files.get_fasta_files(INDIRNAME)
    org_lengths = pyani_files.get_sequence_lengths(infiles)

    # Test ANIb concordance:
    # Make fragments
    fragfiles, fraglengths = anib.fragment_FASTA_files(infiles, outdirname,
                                                       pyani_config.FRAGSIZE)
    # Build databases
    cmdlist = anib.generate_blastdb_commands(infiles,
                                             outdirname,
                                             pyani_config.MAKEBLASTDB_DEFAULT,
                                             mode="ANIb")
    multiprocessing_run(cmdlist)
    # Run pairwise BLASTN
    cmdlist = anib.generate_blastn_commands(fragfiles,
                                            outdirname,
                                            pyani_config.BLASTN_DEFAULT,
                                            mode="ANIb")
    multiprocessing_run(cmdlist, verbose=False)
    # Process BLAST; the pid data is in anib_data[1]
    anib_data = anib.process_blast(outdirname,
                                   org_lengths,
                                   fraglengths,
                                   mode="ANIb")
    anib_pid = anib_data[1].sort(axis=0).sort(axis=1) * 100.

    index, columns = anib_pid.index, anib_pid.columns
    diffmat = anib_pid.as_matrix() - anib_jspecies.as_matrix()
    anib_diff = pd.DataFrame(diffmat, index=index, columns=columns)

    # Write dataframes to file, for reference
    anib_pid.to_csv(os.path.join(outdirname, 'ANIb_pid.tab'), sep='\t')
    anib_jspecies.to_csv(os.path.join(outdirname, 'ANIb_jspecies.tab'),
                         sep='\t')
    anib_diff.to_csv(os.path.join(outdirname, 'ANIb_diff.tab'), sep='\t')
    print "ANIb concordance test output placed in %s" % outdirname
    print anib_pid, anib_jspecies, anib_diff

    # We'd like the absolute difference reported to be < ANIB_THRESHOLD
    max_diff = anib_diff.abs().values.max()
    print "Maximum difference for ANIb: %e" % max_diff
    assert_less(max_diff, ANIB_THRESHOLD)
Пример #7
0
def unified_anib(indirname,User_ID):
    # Build BLAST databases and run pairwise BLASTN
    # Fraglengths does not get reused with BLASTN
    os.mkdir(indirname+'{0}_out/'.format(User_ID))
    os.system("chmod 777 {0}".format(indirname+'{0}_out'.format(User_ID)))
    logging.basicConfig(level=logging.DEBUG, filename="/home/linproject/Workspace/LIN_log/logfile_{0}".format(User_ID),
                        filemode="a+", format="%(asctime)-15s %(levelname)-8s %(message)s")
    infiles = pyani_files.get_fasta_files(indirname)
    org_lengths = pyani_files.get_sequence_lengths(infiles)
    fragsize = pyani_config.FRAGSIZE
    filestems = pyani_config.ANIB_FILESTEMS
    filenames = os.listdir(indirname)
    for fname in filenames:
        if ' ' in  os.path.abspath(fname):
            logging.error("File or directory '%s' contains whitespace" % fname)
            logging.error("This will cause issues with MUMmer and BLAST")
            logging.error("(exiting)")
            sys.exit(1)
    fragfiles, fraglengths = anib.fragment_FASTA_files(infiles, indirname+'{0}_out/'.format(User_ID), fragsize)
    # Export fragment lengths as JSON, in case we re-run BLASTALL with
    # --skip_blastn
    with open(os.path.join(indirname+'{0}_out/'.format(User_ID), 'fraglengths.json'), 'w') as outfile:
        json.dump(fraglengths, outfile)
    # Which executables are we using?
    format_exe = pyani_config.FORMATDB_DEFAULT
    blast_exe = pyani_config.BLASTALL_DEFAULT
    # Run BLAST database-building and executables from a jobgraph
    logging.info("Creating job dependency graph")
    jobgraph = anib.make_job_graph(infiles, fragfiles, indirname+'{0}_out/'.format(User_ID), format_exe, blast_exe, 'ANIblastall')

    logging.info("Running jobs with multiprocessing")
    logging.info("Running job dependency graph")
    cumval = run_mp.run_dependency_graph(jobgraph, verbose=False,
                                         logger=logging)
    if 0 < cumval:
        logging.warning("At least one BLAST run failed. " +
                       "%s may fail." % 'ANIblastall')
    else:
        logging.info("All multiprocessing jobs complete.")

    # Process pairwise BLASTN output
    logging.info("Processing pairwise %s BLAST output." % 'ANIblastall')
    try:
        data = anib.process_blast(indirname+'{0}_out/'.format(User_ID), org_lengths,
                                  fraglengths=fraglengths, mode='ANIblastall')
    except ZeroDivisionError:
        logging.error("One or more BLAST output files has a problem.")
        if 0 < cumval:
            logging.error("This is possibly due to BLASTN run failure, " +
                         "please investigate")
        else:
            logging.error("This is possibly due to ara BLASTN comparison " +
                         "being too distant for use.")
        logging.error(last_exception())
    return data[1]
Пример #8
0
 def test_blastdir_processing(self):
     """parses directory of .blast_tab output."""
     orglengths = pyani_files.get_sequence_lengths(self.infnames)
     fraglengths = anib.get_fraglength_dict(self.fragfiles)
     # ANIb
     result = anib.process_blast(self.anibdir,
                                 orglengths,
                                 fraglengths,
                                 mode="ANIb")
     assert_frame_equal(
         result.percentage_identity.sort_index(1).sort_index(),
         self.anibtgt.sort_index(1).sort_index())
     # ANIblastall
     result = anib.process_blast(self.aniblastalldir,
                                 orglengths,
                                 fraglengths,
                                 mode="ANIblastall")
     assert_frame_equal(
         result.percentage_identity.sort_index(1).sort_index(),
         self.aniblastalltgt.sort_index(1).sort_index())
Пример #9
0
def test_parse_blastdir(anib_output_dir):
    """Parse directory of BLAST+ output."""
    orglengths = pyani_files.get_sequence_lengths(anib_output_dir.infiles)
    fraglengths = anib.get_fraglength_dict(anib_output_dir.fragfiles)
    result = anib.process_blast(anib_output_dir.blastdir,
                                orglengths,
                                fraglengths,
                                mode="ANIb")
    assert_frame_equal(
        result.percentage_identity.sort_index(1).sort_index(),
        anib_output_dir.blastresult.sort_index(1).sort_index(),
    )
Пример #10
0
    def test_anib_concordance(self):
        """ANIb results concordant with JSpecies.

        We expect ANIb results to be quite different, as the BLASTN
        algorithm changed substantially between BLAST and BLAST+
        """
        # Perform ANIb on the input directory contents
        outdir = os.path.join(self.outdir, "blastn")
        os.makedirs(outdir, exist_ok=True)
        fragfiles, fraglengths = anib.fragment_fasta_files(
            self.infiles, outdir, self.fragsize)
        jobgraph = anib.make_job_graph(
            self.infiles, fragfiles,
            anib.make_blastcmd_builder("ANIb", outdir))
        assert_equal(0, run_mp.run_dependency_graph(jobgraph))
        results = anib.process_blast(outdir,
                                     self.orglengths,
                                     fraglengths,
                                     mode="ANIb")
        result_pid = results.percentage_identity
        result_pid.to_csv(os.path.join(self.outdir, "pyani_anib.tab"),
                          sep="\t")

        # Compare JSpecies output to results. We do this in two blocks,
        # masked according to whether the expected result is greater than
        # 90% identity, or less than that threshold.
        # The complete difference matrix is written to output, though
        result_pid = result_pid.sort_index(axis=0).sort_index(axis=1) * 100.0
        lo_result = result_pid.mask(result_pid >= 90).fillna(0)
        hi_result = result_pid.mask(result_pid < 90).fillna(0)
        lo_target = self.target["ANIb"].mask(
            self.target["ANIb"] >= 90).fillna(0)
        hi_target = self.target["ANIb"].mask(
            self.target["ANIb"] < 90).fillna(0)
        lo_diffmat = lo_result.as_matrix() - lo_target.as_matrix()
        hi_diffmat = hi_result.as_matrix() - hi_target.as_matrix()
        diffmat = result_pid.as_matrix() - self.target["ANIb"].as_matrix()
        lo_diff = pd.DataFrame(lo_diffmat,
                               index=result_pid.index,
                               columns=result_pid.columns)
        hi_diff = pd.DataFrame(hi_diffmat,
                               index=result_pid.index,
                               columns=result_pid.columns)
        anib_diff = pd.DataFrame(diffmat,
                                 index=result_pid.index,
                                 columns=result_pid.columns)
        anib_diff.to_csv(os.path.join(self.outdir, "pyani_anib_diff.tab"),
                         sep="\t")
        assert_less(lo_diff.abs().values.max(), self.tolerance["ANIb_lo"])
        assert_less(hi_diff.abs().values.max(), self.tolerance["ANIb_hi"])
Пример #11
0
def test_anib_concordance(
    paths_concordance_fna,
    path_concordance_jspecies,
    tolerance_anib_hi,
    tolerance_anib_lo,
    threshold_anib_lo_hi,
    fragment_length,
    tmp_path,
):
    """Check ANIb results are concordant with JSpecies.

    We expect ANIb results to be quite different, as the BLASTN
    algorithm changed substantially between BLAST and BLAST+ (the
    megaBLAST algorithm is now the default for BLASTN)
    """
    # Get lengths of input genomes
    orglengths = pyani_files.get_sequence_lengths(paths_concordance_fna)

    # Build and run BLAST jobs
    fragfiles, fraglengths = anib.fragment_fasta_files(
        paths_concordance_fna, tmp_path, fragment_length
    )
    jobgraph = anib.make_job_graph(
        paths_concordance_fna, fragfiles, anib.make_blastcmd_builder("ANIb", tmp_path)
    )
    assert 0 == run_mp.run_dependency_graph(jobgraph)  # Jobs must run correctly

    # Process BLAST output
    result_pid = anib.process_blast(
        tmp_path, orglengths, fraglengths, mode="ANIb"
    ).percentage_identity

    # Compare JSpecies output to results. We do this in two blocks,
    # masked according to whether the expected result is greater than
    # a threshold separating "low" from "high" identity comparisons.
    result_pid = result_pid.sort_index(axis=0).sort_index(axis=1) * 100.0
    lo_result = result_pid.mask(result_pid >= threshold_anib_lo_hi).fillna(0).values
    hi_result = result_pid.mask(result_pid < threshold_anib_lo_hi).fillna(0).values

    tgt_pid = parse_jspecies(path_concordance_jspecies)["ANIb"]
    lo_target = tgt_pid.mask(tgt_pid >= threshold_anib_lo_hi).fillna(0).values
    hi_target = tgt_pid.mask(tgt_pid < threshold_anib_lo_hi).fillna(0).values

    assert (lo_result - lo_target, hi_result - hi_target) == (
        pytest.approx(0, abs=tolerance_anib_lo),
        pytest.approx(0, abs=tolerance_anib_hi),
    )
Пример #12
0
    def test_anib_concordance(self):
        """ANIb results concordant with JSpecies.

        We expect ANIb results to be quite different, as the BLASTN
        algorithm changed substantially between BLAST and BLAST+
        """
        # Perform ANIb on the input directory contents
        outdir = os.path.join(self.outdir, "blastn")
        os.makedirs(outdir, exist_ok=True)
        fragfiles, fraglengths = anib.fragment_fasta_files(
            self.infiles, outdir, self.fragsize
        )
        jobgraph = anib.make_job_graph(
            self.infiles, fragfiles, anib.make_blastcmd_builder("ANIb", outdir)
        )
        assert_equal(0, run_mp.run_dependency_graph(jobgraph))
        results = anib.process_blast(outdir, self.orglengths, fraglengths, mode="ANIb")
        result_pid = results.percentage_identity
        result_pid.to_csv(os.path.join(self.outdir, "pyani_anib.tab"), sep="\t")

        # Compare JSpecies output to results. We do this in two blocks,
        # masked according to whether the expected result is greater than
        # 90% identity, or less than that threshold.
        # The complete difference matrix is written to output, though
        result_pid = result_pid.sort_index(axis=0).sort_index(axis=1) * 100.0
        lo_result = result_pid.mask(result_pid >= 90).fillna(0)
        hi_result = result_pid.mask(result_pid < 90).fillna(0)
        lo_target = self.target["ANIb"].mask(self.target["ANIb"] >= 90).fillna(0)
        hi_target = self.target["ANIb"].mask(self.target["ANIb"] < 90).fillna(0)
        lo_diffmat = lo_result.values - lo_target.values
        hi_diffmat = hi_result.values - hi_target.values
        diffmat = result_pid.values - self.target["ANIb"].values
        lo_diff = pd.DataFrame(
            lo_diffmat, index=result_pid.index, columns=result_pid.columns
        )
        hi_diff = pd.DataFrame(
            hi_diffmat, index=result_pid.index, columns=result_pid.columns
        )
        anib_diff = pd.DataFrame(
            diffmat, index=result_pid.index, columns=result_pid.columns
        )
        anib_diff.to_csv(os.path.join(self.outdir, "pyani_anib_diff.tab"), sep="\t")
        assert_less(lo_diff.abs().values.max(), self.tolerance["ANIb_lo"])
        assert_less(hi_diff.abs().values.max(), self.tolerance["ANIb_hi"])
def unified_anib(infiles, org_lengths):
    """Calculate ANIb for files in input directory.

    - infiles - paths to each input file
    - org_lengths - dictionary of input sequence lengths, keyed by sequence

    Calculates ANI by the ANIb method, as described in Goris et al. (2007)
    Int J Syst Evol Micr 57: 81-91. doi:10.1099/ijs.0.64483-0. There are
    some minor differences depending on whether BLAST+ or legacy BLAST
    (BLASTALL) methods are used.

    All FASTA format files (selected by suffix) in the input directory are
    used to construct BLAST databases, placed in the output directory.
    Each file's contents are also split into sequence fragments of length
    options.fragsize, and the multiple FASTA file that results written to
    the output directory. These are BLASTNed, pairwise, against the
    databases.

    The BLAST output is interrogated for all fragment matches that cover
    at least 70% of the query sequence, with at least 30% nucleotide
    identity over the full length of the query sequence. This is an odd
    choice and doesn't correspond to the twilight zone limit as implied by
    Goris et al. We persist with their definition, however.  Only these
    qualifying matches contribute to the total aligned length, and total
    aligned sequence identity used to calculate ANI.

    The results are processed to give matrices of aligned sequence length
    (aln_lengths.tab), similarity error counts (sim_errors.tab), ANIs
    (perc_ids.tab), and minimum aligned percentage (perc_aln.tab) of
    each genome, for each pairwise comparison. These are written to the
    output directory in plain text tab-separated format.
    """
    logger.info("Running %s", args.method)
    blastdir = os.path.join(args.outdirname, ALIGNDIR[args.method])
    logger.info("Writing BLAST output to %s", blastdir)
    # Build BLAST databases and run pairwise BLASTN
    if not args.skip_blastn:
        # Make sequence fragments
        logger.info("Fragmenting input files, and writing to %s",
                    args.outdirname)
        # Fraglengths does not get reused with BLASTN
        fragfiles, fraglengths = anib.fragment_fasta_files(
            infiles, blastdir, args.fragsize)
        # Export fragment lengths as JSON, in case we re-run with --skip_blastn
        with open(os.path.join(blastdir, 'fraglengths.json'), 'w') as outfile:
            json.dump(fraglengths, outfile)

        # Which executables are we using?
        #if args.method == "ANIblastall":
        #    format_exe = args.formatdb_exe
        #    blast_exe = args.blastall_exe
        #else:
        #    format_exe = args.makeblastdb_exe
        #    blast_exe = args.blastn_exe

        # Run BLAST database-building and executables from a jobgraph
        logger.info("Creating job dependency graph")
        jobgraph = anib.make_job_graph(
            infiles, fragfiles,
            anib.make_blastcmd_builder(args.method, blastdir))
        #jobgraph = anib.make_job_graph(infiles, fragfiles, blastdir,
        #                               format_exe, blast_exe, args.method,
        #                               jobprefix=args.jobprefix)
        if args.scheduler == 'multiprocessing':
            logger.info("Running jobs with multiprocessing")
            logger.info("Running job dependency graph")
            cumval = run_mp.run_dependency_graph(jobgraph, logger=logger)
            if 0 < cumval:
                logger.warning(
                    "At least one BLAST run failed. " + "%s may fail.",
                    args.method)
            else:
                logger.info("All multiprocessing jobs complete.")
        else:
            run_sge.run_dependency_graph(jobgraph, logger=logger)
            logger.info("Running jobs with SGE")
    else:
        # Import fragment lengths from JSON
        if args.method == "ANIblastall":
            with open(os.path.join(blastdir, 'fraglengths.json'),
                      'rU') as infile:
                fraglengths = json.load(infile)
        else:
            fraglengths = None
        logger.warning("Skipping BLASTN runs (as instructed)!")

    # Process pairwise BLASTN output
    logger.info("Processing pairwise %s BLAST output.", args.method)
    try:
        data = anib.process_blast(blastdir,
                                  org_lengths,
                                  fraglengths=fraglengths,
                                  mode=args.method)
    except ZeroDivisionError:
        logger.error("One or more BLAST output files has a problem.")
        if not args.skip_blastn:
            if 0 < cumval:
                logger.error("This is possibly due to BLASTN run failure, " +
                             "please investigate")
            else:
                logger.error("This is possibly due to a BLASTN comparison " +
                             "being too distant for use.")
        logger.error(last_exception())
    if not args.nocompress:
        logger.info("Compressing/deleting %s", blastdir)
        compress_delete_outdir(blastdir)

    # Return processed BLAST data
    return data
def unified_anib(args: Namespace, infiles: List[Path],
                 org_lengths: Dict[str, int]) -> pyani_tools.ANIResults:
    """Calculate ANIb for files in input directory.

    :param args:  Namespace of command-line options
    :param logger:  logging object
    :param infiles:  iterable of paths to each input file
    :param org_lengths:  dict of input sequence lengths
        keyed by sequence name

    Calculates ANI by the ANIb method, as described in Goris et al. (2007)
    Int J Syst Evol Micr 57: 81-91. doi:10.1099/ijs.0.64483-0. There are
    some minor differences depending on whether BLAST+ or legacy BLAST
    (BLASTALL) methods are used.

    All FASTA format files (selected by suffix) in the input directory are
    used to construct BLAST databases, placed in the output directory.
    Each file's contents are also split into sequence fragments of length
    options.fragsize, and the multiple FASTA file that results written to
    the output directory. These are BLASTNed, pairwise, against the
    databases.

    The BLAST output is interrogated for all fragment matches that cover
    at least 70% of the query sequence, with at least 30% nucleotide
    identity over the full length of the query sequence. This is an odd
    choice and doesn't correspond to the twilight zone limit as implied by
    Goris et al. We persist with their definition, however.  Only these
    qualifying matches contribute to the total aligned length, and total
    aligned sequence identity used to calculate ANI.

    The results are processed to give matrices of aligned sequence length
    (aln_lengths.tab), similarity error counts (sim_errors.tab), ANIs
    (perc_ids.tab), and minimum aligned percentage (perc_aln.tab) of
    each genome, for each pairwise comparison. These are written to the
    output directory in plain text tab-separated format.
    """
    logger = logging.getLogger(__name__)

    logger.info("Running %s", args.method)
    blastdir = args.outdirname / ALIGNDIR[args.method]
    logger.info("Writing BLAST output to %s", blastdir)

    # Build BLAST databases and run pairwise BLASTN
    cumval, fraglengths = run_blast(args, logger, infiles, blastdir)

    # Process pairwise BLASTN output
    logger.info("Processing pairwise %s BLAST output.", args.method)
    try:
        data = anib.process_blast(blastdir,
                                  org_lengths,
                                  fraglengths=fraglengths,
                                  mode=args.method)
    except ZeroDivisionError:
        logger.error("One or more BLAST output files has a problem.")
        if not args.skip_blastn:
            if cumval > 0:
                logger.error(
                    "This is possibly due to BLASTN run failure, please investigate",
                    exc_info=True,
                )
            else:
                logger.error(
                    "This is possibly due to a BLASTN comparison being too distant for use.",
                    exc_info=True,
                )
    if not args.nocompress:
        logger.info("Compressing/deleting %s", blastdir)
        compress_delete_outdir(blastdir, logger)

    # Return processed BLAST data
    return data
def unified_anib(infiles, org_lengths):
    """Calculate ANIb for files in input directory.

    - infiles - paths to each input file
    - org_lengths - dictionary of input sequence lengths, keyed by sequence

    Calculates ANI by the ANIb method, as described in Goris et al. (2007)
    Int J Syst Evol Micr 57: 81-91. doi:10.1099/ijs.0.64483-0. There are
    some minor differences depending on whether BLAST+ or legacy BLAST
    (BLASTALL) methods are used.

    All FASTA format files (selected by suffix) in the input directory are
    used to construct BLAST databases, placed in the output directory.
    Each file's contents are also split into sequence fragments of length
    options.fragsize, and the multiple FASTA file that results written to
    the output directory. These are BLASTNed, pairwise, against the
    databases.

    The BLAST output is interrogated for all fragment matches that cover
    at least 70% of the query sequence, with at least 30% nucleotide
    identity over the full length of the query sequence. This is an odd
    choice and doesn't correspond to the twilight zone limit as implied by
    Goris et al. We persist with their definition, however.  Only these
    qualifying matches contribute to the total aligned length, and total
    aligned sequence identity used to calculate ANI.

    The results are processed to give matrices of aligned sequence length
    (aln_lengths.tab), similarity error counts (sim_errors.tab), ANIs
    (perc_ids.tab), and minimum aligned percentage (perc_aln.tab) of
    each genome, for each pairwise comparison. These are written to the
    output directory in plain text tab-separated format.
    """
    logger.info("Running %s" % args.method)
    # Build BLAST databases and run pairwise BLASTN
    if not args.skip_blastn:
        # Make sequence fragments
        logger.info("Fragmenting input files, and writing to %s" %
                    args.outdirname)
        # Fraglengths does not get reused with BLASTN
        fragfiles, fraglengths = anib.fragment_FASTA_files(infiles,
                                                           args.outdirname,
                                                           args.fragsize)
        # Export fragment lengths as JSON, in case we re-run BLASTALL with
        # --skip_blastn
        if args.method == "ANIblastall":
            with open(os.path.join(args.outdirname,
                                   'fraglengths.json'), 'w') as outfile:
                json.dump(fraglengths, outfile)

        # Which executables are we using?
        if args.method == "ANIblastall":
            format_exe = args.formatdb_exe
            blast_exe = args.blastall_exe
        else:
            format_exe = args.makeblastdb_exe
            blast_exe = args.blastn_exe

        # Run BLAST database-building and executables from a jobgraph
        logger.info("Creating job dependency graph")
        jobgraph = anib.make_job_graph(infiles, fragfiles, args.outdirname,
                                       format_exe, blast_exe, args.method)
        if args.scheduler == 'multiprocessing':
            logger.info("Running jobs with multiprocessing")
            logger.info("Running job dependency graph")
            cumval = run_mp.run_dependency_graph(jobgraph, verbose=args.verbose,
                                                 logger=logger)
            if 0 < cumval:
                logger.warning("At least one BLAST run failed. " +
                               "%s may fail." % args.method)
            else:
                logger.info("All multiprocessing jobs complete.")
        else:
            run_sge.run_dependency_graph(jobgraph, verbose=args.verbose,
                                         logger=logger)
            logger.info("Running jobs with SGE")
    else:
        # Import fragment lengths from JSON
        if args.method == "ANIblastall":
            with open(os.path.join(args.outdirname, 'fraglengths.json'),
                      'rU') as infile:
                fraglengths = json.load(infile)
        else:
            fraglengths = None
        logger.warning("Skipping BLASTN runs (as instructed)!")

    # Process pairwise BLASTN output
    logger.info("Processing pairwise %s BLAST output." % args.method)
    try:
        data = anib.process_blast(args.outdirname, org_lengths,
                                  fraglengths=fraglengths, mode=args.method)
    except ZeroDivisionError:
        logger.error("One or more BLAST output files has a problem.")
        if not args.skip_blastn:
            if 0 < cumval:
                logger.error("This is possibly due to BLASTN run failure, " +
                             "please investigate")
            else:
                logger.error("This is possibly due to a BLASTN comparison " +
                             "being too distant for use.")
        logger.error(last_exception())
    return data