def apply(self, wav): """Computes distance between sliding windows embeddings Parameter --------- wav : str Path to wav audio file Returns ------- predictions : SlidingWindowFeature """ from pyannote.algorithms.stats.gaussian import Gaussian current_file = {'uri': wav, 'medium': {'wav': wav}} t, left, right = next(self.from_file(current_file)) y = [] for xL, xR in zip(left, right): gL = Gaussian(covariance_type=self.covariance_type).fit(xL) gR = Gaussian(covariance_type=self.covariance_type).fit(xR) y.append(gL.bic(gR, penalty_coef=0)[0]) y = np.array(y) window = SlidingWindow(duration=2 * self.duration, step=self.step, start=0.) return SlidingWindowFeature(y, window)
def apply(self, current_file): """Computes BIC distance between sliding windows Parameter --------- current_file : dict Returns ------- predictions : SlidingWindowFeature """ from pyannote.algorithms.stats.gaussian import Gaussian t, left, right = next(self.from_file(current_file)) y = [] for xL, xR in zip(left, right): gL = Gaussian(covariance_type=self.covariance_type).fit(xL) gR = Gaussian(covariance_type=self.covariance_type).fit(xR) y.append(gL.bic(gR, penalty_coef=0)[0]) y = np.array(y) window = SlidingWindow(duration=2 * self.duration, step=self.step, start=0.) return SlidingWindowFeature(y, window)