Пример #1
0
    def import_fangraphs_pitching(self, table, start, end, cache=False):
        if cache:
            from pybaseball import cache
            cache.enable()

        data = pitching(start, end)

        data.to_sql(table,
                    self.db_connection.get_connection(),
                    if_exists='append')
Пример #2
0
    def import_statcast(self,
                        table,
                        start,
                        end,
                        team=None,
                        verbose=True,
                        cache=False):
        if cache:
            from pybaseball import cache
            cache.enable()
        if team is not None:
            data = statcast(start, end, team, verbose)
        else:
            data = statcast(start, end, verbose)

        data.to_sql(table,
                    self.db_connection.get_connection(),
                    if_exists='append')
Пример #3
0
def test_cache_enable() -> None:
    enable_mock = MagicMock()
    with patch('pybaseball.cache.config.enable', enable_mock):
        cache.enable()
        enable_mock.assert_called_once_with(True)
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import pybaseball as pyb
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_absolute_error
from pybaseball import cache

cache.enable()

fig, ax = plt.subplots(figsize=(12, 7))
"""
#creating the df
df = pd.DataFrame({
    'hits_last_year': [120, 180, 105, 133, 150],
    'abs_last_year': [400, 560, 450, 505, 490],
    'hits_next_year': [127, 170, 110, 128, 145]})

#printing the df
print(df.head())

#styling the graph
sns.set_style('whitegrid')
ax.set_title('Projecting Hits')
ax.set_ylabel('Projected Hits')
ax.set_xlabel('Last Years Hits')

sns.regplot(data = df, x = 'hits_last_year', y = 'hits_next_year')
#plt.show()