periodEnd = "23:59:59" compress = 1 splitLen = 10 numTopics = 8 #validDays = [0, 1, 2, 3, 4, 5, 6] validDays = [0, 2, 4] tdMatrix = [] minBehaviour = 2 if __name__ == "__main__": #neighborclusters = ncluster.parse(neighborhoodLocation) splits = bbdata.makeSplitsSequential(5184, "2008-03-09 00:00:00", \ splitLen = datetime.timedelta(minutes = splitLen), skip = datetime.timedelta(minutes = 10)) """ #Create all splits (documents) used for TD matrix splits = bbdata.makeSplits(25, st, et, valid=validDays, \ splitLen = datetime.timedelta(minutes = splitLen), sPeriod = "07:50:00", \ ePeriod = "08:00:00") splits += bbdata.makeSplits(25, st, et, valid=validDays, \ splitLen = datetime.timedelta(minutes = splitLen), sPeriod = "15:50:00", \ ePeriod = "16:00:00") splits += bbdata.makeSplits(25, st, et, valid=validDays, \
dVector = [] times = [] lsaVector = [] splitLength = 8 skipLength = 1 numSplits = 50 i = 0 if __name__ == "__main__": files = os.listdir(modelLocation) neighborclusters = ncluster.parse(neighborhoodLocation) #Make splits splits = bbdata.makeSplitsSequential(numSplits, st, \ splitLen = datetime.timedelta(minutes = splitLength), \ skip = datetime.timedelta(minutes = skipLength)) #Iterate over splits. for s in splits: print i i += 1 oldSplit = datetime.datetime.strptime(s[0], "%Y-%m-%d %H:%M:%S") newSplit = datetime.datetime.strptime(s[1], "%Y-%m-%d %H:%M:%S") tmpDoc = [] #Loop over all models for f in files: #It is a data file. if f.split('.')[-1] == 'dat': #Open it and grab the models and sensor list
periodEnd = "23:59:59" compress = 1 splitLen = 10 numTopics = 8 #validDays = [0, 1, 2, 3, 4, 5, 6] validDays = [0, 2, 4] tdMatrix = [] minBehaviour = 2 if __name__ == "__main__": #neighborclusters = ncluster.parse(neighborhoodLocation) splits = bbdata.makeSplitsSequential(5184, "2008-03-09 00:00:00", \ splitLen = datetime.timedelta(minutes = splitLen), skip = datetime.timedelta(minutes = 10)) """ #Create all splits (documents) used for TD matrix splits = bbdata.makeSplits(25, st, et, valid=validDays, \ splitLen = datetime.timedelta(minutes = splitLen), sPeriod = "07:50:00", \ ePeriod = "08:00:00") splits += bbdata.makeSplits(25, st, et, valid=validDays, \ splitLen = datetime.timedelta(minutes = splitLen), sPeriod = "15:50:00", \ ePeriod = "16:00:00") splits += bbdata.makeSplits(25, st, et, valid=validDays, \ splitLen = datetime.timedelta(minutes = splitLen),
dVector = [] times = [] lsaVector = [] splitLength = 8 skipLength = 1 numSplits = 50 i = 0 if __name__ == "__main__": files = os.listdir(modelLocation) neighborclusters = ncluster.parse(neighborhoodLocation) #Make splits splits = bbdata.makeSplitsSequential(numSplits, st, \ splitLen = datetime.timedelta(minutes = splitLength), \ skip = datetime.timedelta(minutes = skipLength)) #Iterate over splits. for s in splits: print i i+=1 oldSplit = datetime.datetime.strptime(s[0], "%Y-%m-%d %H:%M:%S") newSplit = datetime.datetime.strptime(s[1], "%Y-%m-%d %H:%M:%S") tmpDoc = [] #Loop over all models for f in files: #It is a data file. if f.split('.')[-1] == 'dat': #Open it and grab the models and sensor list