readLocation = "../../runs/clean/models/" if __name__ == "__main__": files = os.listdir(readLocation) suppress.suppress(2) for f in files: print f #It is a data file. if f.split('.')[-1] == 'dat': #Open files fn = dataio.loadData(readLocation + str(f)) fn.matrixToModel(fn.modelList) sigma = IntegerRange(0, fn.obs) alldata = [] for i in fn.assignedData: alldata += i print "hmm silhouette:" + str( hmmextra.hmmSilhoutte(alldata, fn.models, sigma)) print "inter-model dist:" + str( markov_anneal._fitness(fn.models, fn.assignedData, sigma)) print "Outliers:" + str(len(fn.out)) print "Clusters per models:" + str( [len(i) for i in fn.assignedData]) print "" suppress.restore(2)
""" trainData = markov_anneal.train(sData.values()[0:700], \ numModels, \ states, obs, \ iterations = 20, \ printBest = False, \ clustering = "kmeans", \ verbose = False) """ sigma = IntegerRange(0, obs) bd2 = [] for j in bd: bd2 += j s = hmmextra.hmmSilhoutte(bd2, bm, sigma) f = markov_anneal._fitness(bm, bd, sigma) print "models: " + str(n) + " states:" + str(o) + \ " Silhouette:" + str(s) + " inter-distance:" + str(f) if s > bestSil: bestSil = s bestModels = bm bestData = bd bestOut = out bestStates = states bestInter = f sigma = IntegerRange(0, obs)
suppress.suppress(2) from ghmm import * suppress.restore(2) readLocation = "../../runs/clean/models/" if __name__ == "__main__": files = os.listdir(readLocation) suppress.suppress(2) for f in files: print f #It is a data file. if f.split('.')[-1] == 'dat': #Open files fn = dataio.loadData(readLocation + str(f)) fn.matrixToModel(fn.modelList) sigma = IntegerRange(0, fn.obs) alldata = [] for i in fn.assignedData: alldata += i print "hmm silhouette:" + str(hmmextra.hmmSilhoutte(alldata, fn.models, sigma)) print "inter-model dist:" + str(markov_anneal._fitness(fn.models, fn.assignedData, sigma)) print "Outliers:" + str(len(fn.out)) print "Clusters per models:" + str([len(i) for i in fn.assignedData]) print "" suppress.restore(2)
""" trainData = markov_anneal.train(sData.values()[0:700], \ numModels, \ states, obs, \ iterations = 20, \ printBest = False, \ clustering = "kmeans", \ verbose = False) """ sigma = IntegerRange(0, obs) bd2 = [] for j in bd: bd2 += j s = hmmextra.hmmSilhoutte(bd2, bm, sigma) f = markov_anneal._fitness(bm, bd, sigma) print "models: " + str(n) + " states:" + str(o) + \ " Silhouette:" + str(s) + " inter-distance:" + str(f) if s > bestSil: bestSil = s bestModels = bm bestData = bd bestOut = out bestStates = states bestInter = f sigma = IntegerRange(0, obs) bd2 = []