Пример #1
0
def createAndTrainNetworkFromFile(curs_filename,
                                  count_input_samples,
                                  count_samples,
                                  net_filename,
                                  count_layers=33,
                                  count_outputs=1,
                                  max_epochs=15000,
                                  min_epochs=300):
    net = buildNetwork(count_input_samples, count_layers, count_outputs)
    ds = SupervisedDataSet(count_input_samples, count_outputs)
    wb = load_workbook(filename=curs_filename)
    ws = wb.active
    for i in range(0, count_samples):
        loaded_data = []
        for j in range(0, count_input_samples + 1):
            loaded_data.append(
                round(float(ws.cell(row=i + 1, column=j + 1).value), 4))
            #ds.addSample(loaded_data[:-1], loaded_data[-1])
        #print loaded_data[:-1], loaded_data[-1]
        ds.addSample(loaded_data[:-1], loaded_data[-1])
    trainer = RPropMinusTrainer(net, verbose=True)
    trainer.setData(ds)
    a = trainer.trainUntilConvergence(maxEpochs=max_epochs,
                                      continueEpochs=min_epochs,
                                      validationProportion=0.15)
    net_filename = net_filename[:-4] + str(a[0][-1]) + '.xml'
    NetworkWriter.writeToFile(net, net_filename)
    result_list = [a, net_filename]
    return result_list
def train(
    train,
    label,
    custom_net=None,
    training_mse_threshold=0.40,
    testing_mse_threshold=0.60,
    epoch_threshold=10,
    epochs=100,
    hidden_size=20,
):
    # Test Set.
    x_train = train[0:split_at, :]
    y_train_slice = label.__getslice__(0, split_at)
    y_train = y_train_slice.reshape(-1, 1)
    x_test = train[split_at:, :]
    y_test_slice = label.__getslice__(split_at, label.shape[0])
    y_test = y_test_slice.reshape(-1, 1)

    # Shape.
    input_size = x_train.shape[1]
    target_size = y_train.shape[1]

    # prepare dataset
    ds = SDS(input_size, target_size)
    ds.setField("input", x_train)
    ds.setField("target", y_train)

    # prepare dataset
    ds_test = SDS(input_size, target_size)
    ds_test.setField("input", x_test)
    ds_test.setField("target", y_test)

    min_mse = 1000000

    # init and train
    if custom_net == None:
        net = buildNetwork(input_size, hidden_size, target_size, bias=True)
    else:
        print "Picking up the custom network"
        net = custom_net

    trainer = RPropMinusTrainer(net, dataset=ds, verbose=False, weightdecay=0.01, batchlearning=True)
    print "training for {} epochs...".format(epochs)

    for i in range(epochs):
        mse = trainer.train()
        print "training mse, epoch {}: {}".format(i + 1, math.sqrt(mse))

        p = net.activateOnDataset(ds_test)
        mse = math.sqrt(MSE(y_test, p))
        print "-- testing mse, epoch {}: {}".format(i + 1, mse)
        pickle.dump(net, open("current_run", "wb"))

        if min_mse > mse:
            print "Current minimum found at ", i
            pickle.dump(net, open("current_min_epoch_" + model_file, "wb"))
            min_mse = mse

    pickle.dump(net, open(model_file, "wb"))
    return net
Пример #3
0
    def exam(self, dc, train_com, train_path):
        """
        Here you can train your networks.

        Parameters
        ----------
        :param dc: dict
            Dict of commands with values.
        :param train_com:
            Command what you want teach by ann to recognize.
        :param train_path:
            Path to folder with train examples.

        Returns
        -------
        :return:
            File with network.

        """
        num_hid = 1
        put, out = [], []

        ds = SupervisedDataSet(420, 1)
        nt = buildNetwork(420, 3, 1, bias=True, hiddenclass=SigmoidLayer, outclass=SigmoidLayer)

        for way in train_path:
            for i in os.listdir(way):
                lk = self.link(i)
                if lk:
                    self.logger.debug(u'File was added to training list %s' % i)
                    result = self.ext_t(way+i)
                    ds.addSample(result, (dc[lk],))
                    put.append(result)
                    out.append([dc[lk]])

        net = nl.net.newff([[np.min(put), np.max(put)]]*420, [num_hid, 1], [nl.trans.LogSig(), nl.trans.SatLinPrm()])
        net.trainf = nl.train.train_rprop
        trainer = RPropMinusTrainer(nt, dataset=ds, verbose=False)
        self.logger.info(u'Training brain...')
        trainer.trainUntilConvergence(maxEpochs=100, verbose=False, continueEpochs=100, validationProportion=1e-7)
        self.logger.info(u'Training neural...')
        error = net.train(put, out, epochs=500, show=500, goal=1e-4, lr=1e-10)

        while error[-1] > 1e-3:
            self.logger.info(u'Try to one more training, because MSE are little not enough!')
            net = nl.net.newff([[np.min(put), np.max(put)]]*420, [num_hid, 1], [nl.trans.LogSig(), nl.trans.SatLinPrm()])
            net.trainf = nl.train.train_rprop
            self.logger.info(u'Training neural...')
            error = net.train(put, out, epochs=500, show=500, goal=1e-4, lr=1e-10)
            num_hid += 1

        try:
            net.save(u'networks/%s_neurolab' % train_com)
            fl = open(u'networks/%s_brain' % train_com, 'w')
            pickle.dump(nt, fl)
            fl.close()

        except IOError:
            os.mkdir(u'networks')
            net.save(u'networks/%s_neurolab' % train_com)
Пример #4
0
 def train(self, epoch):
     self.ds._convertToOneOfMany()
     trainer = RPropMinusTrainer(self.net,
                                 dataset=self.ds,
                                 momentum=0.1,
                                 verbose=True,
                                 weightdecay=0.01)
     trainer.trainEpochs(epoch)
Пример #5
0
def trainNetwork(net, sample_list, validate_list, net_filename, max_epochs=5500, min_epochs=300):
    count_input_samples = len(sample_list)
    count_outputs = len(validate_list)
    ds = SupervisedDataSet(count_input_samples, count_outputs)
    ds.addSample(sample_list, validate_list)
    trainer = RPropMinusTrainer(net, verbose=True)
    trainer.setData(ds)
    trainer.trainUntilConvergence(maxEpochs=max_epochs, continueEpochs=min_epochs)
    NetworkWriter.writeToFile(net, net_filename)
    return net
def train_cross_validate(train, label, custom_net=None, training_mse_threshold=0.40, testing_mse_threshold=0.60,
                         epoch_threshold=10, epochs=100, hidden_size=50):
    # Test Set.
    x_train = train[0:split_at, :]
    y_train_slice = label.__getslice__(0, split_at)
    y_train = y_train_slice.reshape(-1, 1)
    x_test = train[split_at:, :]
    y_test_slice = label.__getslice__(split_at, label.shape[0])
    y_test = y_test_slice.reshape(-1, 1)

    # Shape.
    input_size = x_train.shape[1]
    target_size = y_train.shape[1]

    input_size_test = x_test.shape[1]
    target_size_test = y_test.shape[1]

    # prepare dataset
    ds = SDS(input_size, target_size)
    ds.setField('input', x_train)
    ds.setField('target', y_train)

    # prepare dataset
    ds_test = SDS(input_size, target_size)
    ds_test.setField('input', x_test)
    ds_test.setField('target', y_test)

    min_mse = 1000000

    # init and train
    if custom_net == None:
        net = buildNetwork(input_size, hidden_size, target_size, bias=True, hiddenclass=TanhLayer)
    else:
        print "Picking up the custom network"
        net = custom_net

    trainer = RPropMinusTrainer(net, dataset=ds, verbose=True, weightdecay=0.01, batchlearning=True)
    print "training for {} epochs...".format(epochs)

    for i in range(epochs):
        mse = trainer.train()
        print "training mse, epoch {}: {}".format(i + 1, mse)

        p = net.activateOnDataset(ds_test)
        mse = MSE(y_test, p)
        print "-- testing mse, epoch {}: {}".format(i + 1, mse)
        pickle.dump(net, open("current_run", 'wb'))

        if min_mse > mse:
            print "Current minimum found at ", i
            pickle.dump(net, open("current_min_epoch_" + model_file, 'wb'))
            min_mse = mse

    pickle.dump(net, open(model_file, 'wb'))
    return net
Пример #7
0
    def recurrent_neural_network(self, train_X, train_y, test_X, test_y, n_hidden_neurons=50, iterations=100,
                                 gridsearch=False, gridsearch_training_frac=0.7, outputbias=False, error='accuracy'):
        """
        Apply a recurrent neural network for classification upon the training data (with the specified number of
        hidden neurons and iterations), and use the created network to predict the outcome for both the test and
        training set. It returns the categorical predictions for the training and test set as well as the
        probabilities associated with each class, each class being represented as a column in the data frame.
        """

        if gridsearch:
            n_hidden_neurons, iterations, outputbias = self. \
                gridsearch_recurrent_neural_network(train_X, train_y, gridsearch_training_frac=gridsearch_training_frac,
                                                    error=error)
        # Create numerical datasets first
        new_train_X, new_test_X = self.create_numerical_multiple_dataset(train_X, test_X)
        new_train_y, new_test_y = self.create_numerical_multiple_dataset(train_y, test_y)

        # Normalize the input
        new_train_X, new_test_X, min_X, max_X = self.normalize(new_train_X, new_test_X, 0, 1)
        new_train_y, new_test_y, min_y, max_y = self.normalize(new_train_y, new_test_y, 0.1, 0.9)

        # Create the proper pybrain datasets
        ds_training = self.rnn_dataset(new_train_X, new_train_y)
        ds_test = self.rnn_dataset(new_test_X, new_test_y)

        inputs = len(new_train_X.columns)
        outputs = len(new_train_y.columns)

        # Build the network with the proper parameters
        n = buildNetwork(inputs, n_hidden_neurons, outputs, hiddenclass=SigmoidLayer, outclass=SigmoidLayer,
                         outputbias=outputbias, recurrent=True)

        # Train using back propagation through time
        # trainer = BackpropTrainer(n, dataset=ds_training, verbose=False, momentum=0.9, learningrate=0.01)
        trainer = RPropMinusTrainer(n, dataset=ds_training, verbose=False)

        for i in range(0, iterations):
            trainer.train()

        Y_train = []
        Y_test = []

        for sample, target in ds_training.getSequenceIterator(0):
            Y_train.append(n.activate(sample).tolist())

        for sample, target in ds_test.getSequenceIterator(0):
            Y_test.append(n.activate(sample).tolist())

        y_train_result = pd.DataFrame(Y_train, columns=new_train_y.columns, index=train_y.index)
        y_test_result = pd.DataFrame(Y_test, columns=new_test_y.columns, index=test_y.index)

        y_train_result = self.denormalize(y_train_result, min_y, max_y, 0.1, 0.9)
        y_test_result = self.denormalize(y_test_result, min_y, max_y, 0.1, 0.9)

        return y_train_result.idxmax(axis=1), y_test_result.idxmax(axis=1), y_train_result, y_test_result
    def train(self, params, verbose=False):

        if params['reset_every_training']:
            if verbose:
                print 'create lstm network'

            random.seed(6)
            if params['output_encoding'] == None:
                self.net = buildNetwork(self.nDimInput,
                                        params['num_cells'],
                                        self.nDimOutput,
                                        hiddenclass=LSTMLayer,
                                        bias=True,
                                        outputbias=True,
                                        recurrent=True)
            elif params['output_encoding'] == 'likelihood':
                self.net = buildNetwork(self.nDimInput,
                                        params['num_cells'],
                                        self.nDimOutput,
                                        hiddenclass=LSTMLayer,
                                        bias=True,
                                        outclass=SigmoidLayer,
                                        recurrent=True)

        self.net.reset()

        ds = SequentialDataSet(self.nDimInput, self.nDimOutput)
        networkInput = self.window(self.networkInput, params)
        targetPrediction = self.window(self.targetPrediction, params)

        # prepare a training data-set using the history
        for i in xrange(len(networkInput)):
            ds.addSample(self.inputEncoder.encode(networkInput[i]),
                         self.outputEncoder.encode(targetPrediction[i]))
        mycount = 0

        if params['num_epochs'] > 1:
            trainer = RPropMinusTrainer(self.net, dataset=ds, verbose=verbose)

            if verbose:
                print " train LSTM on ", len(
                    ds), " records for ", params['num_epochs'], " epochs "

            if len(networkInput) > 1:
                trainer.trainEpochs(params['num_epochs'])

        else:
            self.trainer.setData(ds)
            self.trainer.train()

        # run through the training dataset to get the lstm network state right
        self.net.reset()
        for i in xrange(len(networkInput)):
            self.net.activate(ds.getSample(i)[0])
Пример #9
0
 def AddData(self, datainput, dataoutput):
     if len(dataoutput) != len(datainput):
         print("Not equals data", len(dataoutput), len(datainput))
         return 1
     self.ds = SupervisedDataSet(self.inputsize, self.outputsize)
     for i in xrange(len(dataoutput)):
         self.ds.appendLinked(datainput[i], dataoutput[i])
     self.trainer = RPropMinusTrainer(self.net,
                                      dataset=self.ds,
                                      learningrate=0.1)
     return 0
Пример #10
0
def createAndTrainNetworkFromList(train_list, count_input_samples, net_filename, count_layers=33,
                          count_outputs=1, max_epochs=15000, min_epochs=300):
    net = buildNetwork(count_input_samples, count_layers, count_outputs)
    ds = SupervisedDataSet(count_input_samples, count_outputs)
    count_samples = len(train_list)
    for i in range(0, count_samples):
        ds.addSample(train_list[i][:-count_outputs], train_list[i][-count_outputs])
    trainer = RPropMinusTrainer(net, verbose=True)
    trainer.setData(ds)
    a = trainer.trainUntilConvergence(maxEpochs=max_epochs, continueEpochs=min_epochs, validationProportion=0.15)
    net_filename = net_filename[:-4]+str(a[0][-1])+'.xml'
    NetworkWriter.writeToFile(net, net_filename)
    result_list = [a, net_filename]
    return result_list
  def __init__(self, ds): 

    num_inputs = ds.num_features * sequence_classifier.num_time_steps
    self.alldata = SequenceClassificationDataSet(num_inputs, 
                                                 target = 1,
                                                 nb_classes   = ds.get_num_classes(),
                                                 class_labels = ds.get_classes() )

    for Idx in range(len(ds.all_moves)):
      if not (Idx + sequence_classifier.num_time_steps < len(ds.all_moves)):
        continue
   
      class_first = ds.all_moves[Idx].class_ 
      features  = []
      for i in range(sequence_classifier.num_time_steps):
        features = features + ds.all_moves[Idx + i].get_features()

      class_last = ds.all_moves[Idx + sequence_classifier.num_time_steps].class_
  
      if class_first == class_last:
        self.alldata.appendLinked(features, [ds.get_classes().index(ds.all_moves[Idx].class_)])
        self.alldata.newSequence()
      

    self.tstdata, self.trndata = self.alldata.splitWithProportion(0.25)
    self.trndata._convertToOneOfMany()
    self.tstdata._convertToOneOfMany()

    self.seq_rnn      = None #buildNetwork(num_inputs, 2, self.trndata.outdim, hiddenclass=LSTMLayer,recurrent=True ,outclass=SoftmaxLayer)
    self.create_network(num_inputs)

    self.trainer  = RPropMinusTrainer(module=self.seq_rnn, dataset=self.trndata)
Пример #12
0
 def train(self, training_files, learningrate=0.01, scaling=True, noise=False, verbose=True):
     print "building dataset..."
     ds = SupervisedDataSet(SensorModel.array_length(self.sensor_ids), 1)
     # read training file line, create sensormodel object, do backprop
     a = None
     s = None
     for logfile in training_files:
         print "loading file", logfile
         with open(logfile) as f:
             for line in f:
                 if line.startswith("Received:"):
                     s = SensorModel(string=line.split(' ', 1)[1])
                 elif line.startswith("Sending:"):
                     a = Actions.from_string(string=line.split(' ', 1)[1])
                 if s is not None and a is not None:
                     ds.addSample(inp=s.get_array(self.sensor_ids), target=a[self.action_ids[0]])
                     if noise:
                         # add the same training sample again but with noise in the sensors
                         s.add_noise()
                         ds.addSample(inp=s.get_array(self.sensor_ids), target=a[self.action_ids[0]])
                     s = None
                     a = None
     print "dataset size:", len(ds)
     if scaling:
         print "scaling dataset"
         self.scaler_input = StandardScaler(with_mean=True, with_std=False).fit(ds.data['input'])
         ds.data['input'] = self.scaler_input.transform(ds.data['input'])
         ds.data['target'] = ds.data['target']
     #self.trainer = BackpropTrainer(self.net, learningrate=learningrate, verbose=verbose)
     self.trainer = RPropMinusTrainer(self.net, verbose=verbose, batchlearning=True)
     print "training network..."
     self.trainer.trainUntilConvergence(dataset=ds, validationProportion=0.25, maxEpochs=10, continueEpochs=2)
Пример #13
0
 def __init__(self): 
     self.inputs = 3
     self.outputs = 1
     self.n = buildNetwork(self.inputs, 200,200,200,200,self.outputs, bias=True,hiddenclass=TanhLayer)
     self.n.sortModules()
     self.ds = SupervisedDataSet(self.inputs, self.outputs)
     self.trainer = RPropMinusTrainer(self.n)
     self.trainer.setData(self.ds)
Пример #14
0
    def train(self, trndata, valdata, hidden_neurons=5, hidden_class=SigmoidLayer, iterations=3):
        print "Hidden neurons: " + str(hidden_neurons)
        print "Hidden class: " + str(hidden_class)
        print "Iterations: " + str(iterations)

        fnn = buildNetwork(trndata.indim, hidden_neurons, trndata.outdim, outclass=SoftmaxLayer,
                           hiddenclass=hidden_class)
        trainer = RPropMinusTrainer(fnn, dataset=trndata, verbose=False)
        #trainer = BackpropTrainer(fnn, dataset=trndata, momentum=0.5, verbose=True, learningrate=0.05)

        for i in range(iterations):
            trainer.train()
            out, tar = trainer.testOnClassData(dataset=valdata, return_targets=True, verbose=False)
            #used to return final score, not used yet :D
            print str(i) + " " + str(accuracy(out, tar))

        self.model = trainer
Пример #15
0
    def AddDataSequential(self, data):
        self.ds = SequentialDataSet(self.inputsize, self.outputsize)
        for i in xrange(len(data) - 1, 0, -1):

            t = data[i]
            k = i - 1
            while k > -1:
                self.ds.appendLinked(data[k], t)
                k -= 1
            self.ds.newSequence()
        """print self.ds.getNumSequences()
		for i in range(self.ds.getNumSequences()):
			for input, target in self.ds.getSequenceIterator(i):
				print i, TransToIntList_45(input), TransToIntList_45(target)"""
        self.trainer = RPropMinusTrainer(self.net,
                                         dataset=self.ds,
                                         learningrate=0.1)
        return 0
Пример #16
0
def train_net():
    fnn = buildNetwork(len(input_args), 3, 2)
    ds = ClassificationDataSet(len(input_args),2,nb_classes=2)

    ds = generate_data(ds , hour_to_use_app = 10)
    
    trainer = RPropMinusTrainer( fnn, dataset= ds, verbose=True)

    trainer.train()
    trainer.trainEpochs(15)
    
    test = ClassificationDataSet(4,2)
    test.addSample((12,6,10,6),[1,0])
    test.addSample((12,1,7,2),[0,1])
    test.addSample((12,3,11,1),[0,1])
    
    fnn.activateOnDataset(test)
    
    return fnn,trainer,ds,test
Пример #17
0
def createAndTrainNetworkFromFile(curs_filename, count_input_samples, count_samples, net_filename, count_layers=33,
                          count_outputs=1, max_epochs=15000, min_epochs=300):
    net = buildNetwork(count_input_samples, count_layers, count_outputs)
    ds = SupervisedDataSet(count_input_samples, count_outputs)
    wb = load_workbook(filename=curs_filename)
    ws = wb.active
    for i in range(0, count_samples):
        loaded_data = []
        for j in range(0, count_input_samples + 1):
            loaded_data.append(round(float(ws.cell(row=i+1, column=j+1).value), 4))
            #ds.addSample(loaded_data[:-1], loaded_data[-1])
        #print loaded_data[:-1], loaded_data[-1]
        ds.addSample(loaded_data[:-1], loaded_data[-1])
    trainer = RPropMinusTrainer(net, verbose=True)
    trainer.setData(ds)
    a = trainer.trainUntilConvergence(maxEpochs=max_epochs, continueEpochs=min_epochs, validationProportion=0.15)
    net_filename = net_filename[:-4]+str(a[0][-1])+'.xml'
    NetworkWriter.writeToFile(net, net_filename)
    result_list = [a, net_filename]
    return result_list
    def train(self,
              cycles,
              percent,
              hidden_layers=3,
              hiddenclass=None,
              num_outputs=1,
              num_inputs=-1):
        num_inputs = self._count_inputs() if num_inputs == -1 else num_inputs
        if num_inputs <= 0 or num_outputs <= 0 or cycles <= 0 or (percent > 100 or percent <= 0):
            return

        network = self._buildNet(hidden_layers, num_outputs, num_inputs, hiddenclass)
        data_set = self.get_data_set(percent, num_inputs, num_outputs)

        trainer = RPropMinusTrainer(network, dataset=data_set)

        for i in range(cycles):
            trainer.train()

        return network
Пример #19
0
class Brain():
    def __init__(self): 
        self.inputs = 3
        self.outputs = 1
        self.n = buildNetwork(self.inputs, 200,200,200,200,self.outputs, bias=True,hiddenclass=TanhLayer)
        self.n.sortModules()
        self.ds = SupervisedDataSet(self.inputs, self.outputs)
        self.trainer = RPropMinusTrainer(self.n)
        self.trainer.setData(self.ds)
    def wipedataset(self):
        self.ds = SupervisedDataSet(self.inputs, self.outputs)
        pass
    def cycle(self,action,state):
        return self.n.activate([action,state[0],state[1]])
    def AddToTrainingSet(self,action,state,output):
        out= "New Set","Action: ",action,"State: ", state,"Output: ", output
        f.write(str(out)+"\n")
        self.ds.addSample((action,state[0],state[1]),output)
    def train(self):
        return "ERROR",self.trainer.train()
    def traintoconverg(self):
        x = 10000
        y=0
        z=100
        print len(self.ds),"DS SIZE"
        while x > 0.0001 and y < z:
            print len(self.ds)
            x = self.trainer.train()
            print x,"ERROR",y
            y+=1
        f = open('brains/brain2000.ann','w')
        pickle.dump(self.n,f)
    def trainfinal(self):
        x = 10000
        y=0
        z=25
        while x > 0.00001 and y < z:
            x = self.trainer.train()
            print x,"ERROR",y
            y+=1
Пример #20
0
def createAndTrainNetworkFromList(train_list,
                                  count_input_samples,
                                  net_filename,
                                  count_layers=33,
                                  count_outputs=1,
                                  max_epochs=15000,
                                  min_epochs=300):
    net = buildNetwork(count_input_samples, count_layers, count_outputs)
    ds = SupervisedDataSet(count_input_samples, count_outputs)
    count_samples = len(train_list)
    for i in range(0, count_samples):
        ds.addSample(train_list[i][:-count_outputs],
                     train_list[i][-count_outputs])
    trainer = RPropMinusTrainer(net, verbose=True)
    trainer.setData(ds)
    a = trainer.trainUntilConvergence(maxEpochs=max_epochs,
                                      continueEpochs=min_epochs,
                                      validationProportion=0.15)
    net_filename = net_filename[:-4] + str(a[0][-1]) + '.xml'
    NetworkWriter.writeToFile(net, net_filename)
    result_list = [a, net_filename]
    return result_list
Пример #21
0
def trainNetwork(dirname):
    numFeatures = 5000
    ds = SequentialDataSet(numFeatures, 1)
    
    tracks = glob.glob(os.path.join(dirname, 'train??.wav'))
    for t in tracks:
        track = os.path.splitext(t)[0]
        # load training data
        print "Reading %s..." % track
        data = numpy.genfromtxt(track + '_seg.csv', delimiter=",")
        labels = numpy.genfromtxt(track + 'REF.txt', delimiter='\t')[0::10,1]
        numData = data.shape[0]

        # add the input to the dataset
        print "Adding to dataset..."
        ds.newSequence()
        for i in range(numData):
            ds.addSample(data[i], (labels[i],))
    
    # initialize the neural network
    print "Initializing neural network..."
    net = buildNetwork(numFeatures, 50, 1,
                       hiddenclass=LSTMLayer, outputbias=False, recurrent=True)
    
    # train the network on the dataset
    print "Training neural net"
    trainer = RPropMinusTrainer(net, dataset=ds)
##    trainer.trainUntilConvergence(maxEpochs=50, verbose=True, validationProportion=0.1)
    error = -1
    for i in range(100):
        new_error = trainer.train()
        print "error: " + str(new_error)
        if abs(error - new_error) < 0.1: break
        error = new_error

    # save the network
    print "Saving neural network..."
    NetworkWriter.writeToFile(net, os.path.basename(dirname) + 'net')
Пример #22
0
 def train(self, input_row, output_row):
     """
     Training network by r-prop.
     PARTITION_OF_EDUCATION_VERIFICATION_SET - education|validation ratio
     MAX_EPOCHS - count of max steps of education
     OUTCASTING_EPOCHS - if education can't get out of local minimum it given count of steps, it stops
     """
     self._form_set(input_row, output_row)
     trainer = RPropMinusTrainer(module=self.network, dataset=self.data_set)
     self.training_errors, self.validation_errors = trainer.trainUntilConvergence(
         validationProportion=self.settings.training_part_fraction,
         maxEpochs=self.settings.maximum_training_epochs,
         continueEpochs=self.settings.quit_epochs)
     len_validate = int(len(output_row[0]['data']) * (1 - self.settings.training_part_fraction))
     results_of = [list(self.network.activate(x))[0] for x in self.inputs_for_validation[len_validate:]]
     self.mse = sum(map(lambda result, target: fabs(result - target), list(results_of),
                        list(output_row[0]['data'][len_validate:]))) / len(results_of)
     print 'DUMB-dd'
     for it in results_of:
         print it
     print 'DUMB-pp'
     for it in list(output_row[0]['data'][len_validate:]):
         print it
     print '| | |-MSE = ', self.mse
Пример #23
0
    def fit(self, X, y):
        """
        Trains the classifier

        :param pandas.DataFrame X: data shape [n_samples, n_features]
        :param y: labels of events - array-like of shape [n_samples]
        .. note::
            doesn't support sample weights
        """

        dataset = self._prepare_net_and_dataset(X, y, 'classification')

        if self.use_rprop:
            trainer = RPropMinusTrainer(self.net,
                                        etaminus=self.etaminus,
                                        etaplus=self.etaplus,
                                        deltamin=self.deltamin,
                                        deltamax=self.deltamax,
                                        delta0=self.delta0,
                                        dataset=dataset,
                                        learningrate=self.learningrate,
                                        lrdecay=self.lrdecay,
                                        momentum=self.momentum,
                                        verbose=self.verbose,
                                        batchlearning=self.batchlearning,
                                        weightdecay=self.weightdecay)
        else:
            trainer = BackpropTrainer(self.net,
                                      dataset,
                                      learningrate=self.learningrate,
                                      lrdecay=self.lrdecay,
                                      momentum=self.momentum,
                                      verbose=self.verbose,
                                      batchlearning=self.batchlearning,
                                      weightdecay=self.weightdecay)

        if self.epochs < 0:
            trainer.trainUntilConvergence(
                maxEpochs=self.max_epochs,
                continueEpochs=self.continue_epochs,
                verbose=self.verbose,
                validationProportion=self.validation_proportion)
        else:
            for i in range(self.epochs):
                trainer.train()
        self.__fitted = True

        return self
Пример #24
0
    def partial_fit(self, X, y):
        """
        Additional training of the estimator

        :param pandas.DataFrame X: data shape [n_samples, n_features]
        :param y: labels of events - array-like of shape [n_samples]

        :return: self
        """
        dataset = self._prepare_dataset(X, y, self._model_type)

        if not self.is_fitted():
            self._prepare_net(dataset=dataset, model_type=self._model_type)

        if self.use_rprop:
            trainer = RPropMinusTrainer(self.net,
                                        etaminus=self.etaminus,
                                        etaplus=self.etaplus,
                                        deltamin=self.deltamin,
                                        deltamax=self.deltamax,
                                        delta0=self.delta0,
                                        dataset=dataset,
                                        learningrate=self.learningrate,
                                        lrdecay=self.lrdecay,
                                        momentum=self.momentum,
                                        verbose=self.verbose,
                                        batchlearning=self.batchlearning,
                                        weightdecay=self.weightdecay)
        else:
            trainer = BackpropTrainer(self.net,
                                      dataset,
                                      learningrate=self.learningrate,
                                      lrdecay=self.lrdecay,
                                      momentum=self.momentum,
                                      verbose=self.verbose,
                                      batchlearning=self.batchlearning,
                                      weightdecay=self.weightdecay)

        if self.epochs < 0:
            trainer.trainUntilConvergence(
                maxEpochs=self.max_epochs,
                continueEpochs=self.continue_epochs,
                verbose=self.verbose,
                validationProportion=self.validation_proportion)
        else:
            trainer.trainEpochs(epochs=self.epochs, )
        return self
Пример #25
0
def trainNetwork(net,
                 sample_list,
                 validate_list,
                 net_filename,
                 max_epochs=5500,
                 min_epochs=300):
    count_input_samples = len(sample_list)
    count_outputs = len(validate_list)
    ds = SupervisedDataSet(count_input_samples, count_outputs)
    ds.addSample(sample_list, validate_list)
    trainer = RPropMinusTrainer(net, verbose=True)
    trainer.setData(ds)
    trainer.trainUntilConvergence(maxEpochs=max_epochs,
                                  continueEpochs=min_epochs)
    NetworkWriter.writeToFile(net, net_filename)
    return net
Пример #26
0
    def fit(self, X, y):
        """
        Trains the classifier

        :param pandas.DataFrame X: data shape [n_samples, n_features]
        :param y: labels of events - array-like of shape [n_samples]
        .. note::
            doesn't support sample weights
        """

        dataset = self._prepare_net_and_dataset(X, y, 'classification')

        if self.use_rprop:
            trainer = RPropMinusTrainer(self.net,
                                        etaminus=self.etaminus,
                                        etaplus=self.etaplus,
                                        deltamin=self.deltamin,
                                        deltamax=self.deltamax,
                                        delta0=self.delta0,
                                        dataset=dataset,
                                        learningrate=self.learningrate,
                                        lrdecay=self.lrdecay,
                                        momentum=self.momentum,
                                        verbose=self.verbose,
                                        batchlearning=self.batchlearning,
                                        weightdecay=self.weightdecay)
        else:
            trainer = BackpropTrainer(self.net,
                                      dataset,
                                      learningrate=self.learningrate,
                                      lrdecay=self.lrdecay,
                                      momentum=self.momentum,
                                      verbose=self.verbose,
                                      batchlearning=self.batchlearning,
                                      weightdecay=self.weightdecay)

        if self.epochs < 0:
            trainer.trainUntilConvergence(maxEpochs=self.max_epochs,
                                          continueEpochs=self.continue_epochs,
                                          verbose=self.verbose,
                                          validationProportion=self.validation_proportion)
        else:
            for i in range(self.epochs):
                trainer.train()
        self.__fitted = True

        return self
Пример #27
0
    def partial_fit(self, X, y):
        """
        Additional training of the estimator

        :param pandas.DataFrame X: data shape [n_samples, n_features]
        :param y: labels of events - array-like of shape [n_samples]

        :return: self
        """
        dataset = self._prepare_dataset(X, y, self._model_type)

        if not self.is_fitted():
            self._prepare_net(dataset=dataset, model_type=self._model_type)

        if self.use_rprop:
            trainer = RPropMinusTrainer(self.net,
                                        etaminus=self.etaminus,
                                        etaplus=self.etaplus,
                                        deltamin=self.deltamin,
                                        deltamax=self.deltamax,
                                        delta0=self.delta0,
                                        dataset=dataset,
                                        learningrate=self.learningrate,
                                        lrdecay=self.lrdecay,
                                        momentum=self.momentum,
                                        verbose=self.verbose,
                                        batchlearning=self.batchlearning,
                                        weightdecay=self.weightdecay)
        else:
            trainer = BackpropTrainer(self.net,
                                      dataset,
                                      learningrate=self.learningrate,
                                      lrdecay=self.lrdecay,
                                      momentum=self.momentum,
                                      verbose=self.verbose,
                                      batchlearning=self.batchlearning,
                                      weightdecay=self.weightdecay)

        if self.epochs < 0:
            trainer.trainUntilConvergence(maxEpochs=self.max_epochs,
                                          continueEpochs=self.continue_epochs,
                                          verbose=self.verbose,
                                          validationProportion=self.validation_proportion)
        else:
            trainer.trainEpochs(epochs=self.epochs, )
        return self
Пример #28
0
    tstdata.appendLinked(RopewayJoint[i,:], [5])
    
    
trndata._convertToOneOfMany()
tstdata._convertToOneOfMany()    
print 'Loaded Dataset!'

#####################
#####################
     
print 'Building Network'
MLPClassificationNet = buildNetwork(trndata.indim,153,trndata.outdim, hiddenclass=SigmoidLayer, outclass=SoftmaxLayer) 

print "Number of weights:",MLPClassificationNet.paramdim

trainer = RPropMinusTrainer(MLPClassificationNet, dataset=trndata, verbose=True, weightdecay=0.01)
    
tstErrorCount=0
oldtstError=0
trn_error=[]
tst_error=[]
trn_class_accu=[]
tst_class_accu=[]
        
trnErrorPath='153sigmoid/trn_error'
tstErrorPath='153sigmoid/tst_error'
trnClassErrorPath='153sigmoid/trn_ClassAccu'
tstClassErrorPath='153sigmoid/tst_ClassAccu'
networkPath='153sigmoid/TrainUntilConv.xml'
figPath='153sigmoid/ErrorGraph'
 
Пример #29
0
    def get_new_trainer(self, data_set):
        if not self.neural_net:
            self.build_neural_net()

        return RPropMinusTrainer(self.neural_net, dataset=data_set)
Пример #30
0
def trainNetwork(dirname):

    numFeatures = 2000

    ds = SequentialDataSet(numFeatures, 1)

    tracks = glob.glob(os.path.join(dirname, "*.csv"))
    for t in tracks:
        track = os.path.splitext(t)[0]
        # load training data
        print "Reading %s..." % t
        data = numpy.genfromtxt(t, delimiter=",")
        numData = data.shape[0]

        # add the input to the dataset
        print "Adding to dataset..."
        ds.newSequence()
        for i in range(numData):
            # ds.addSample(data[i], (labels[i],))
            input = data[i]
            label = input[numFeatures]
            if label > 0:
                label = midi_util.frequencyToMidi(label)
            ds.addSample(input[0:numFeatures], (label,))

    # initialize the neural network
    print "Initializing neural network..."
    # net = buildNetwork(numFeatures, 50, 1,
    #                   hiddenclass=LSTMLayer, bias=True, recurrent=True)

    # manual network building
    net = RecurrentNetwork()
    inlayer = LinearLayer(numFeatures)
    # h1 = LSTMLayer(70)
    # h2 = SigmoidLayer(50)
    octaveLayer = LSTMLayer(5)
    noteLayer = LSTMLayer(12)
    combinedLayer = SigmoidLayer(60)
    outlayer = LinearLayer(1)

    net.addInputModule(inlayer)
    net.addOutputModule(outlayer)
    # net.addModule(h1)
    # net.addModule(h2)
    net.addModule(octaveLayer)
    net.addModule(noteLayer)
    net.addModule(combinedLayer)

    # net.addConnection(FullConnection(inlayer, h1))
    # net.addConnection(FullConnection(h1, h2))
    # net.addConnection(FullConnection(h2, outlayer))

    net.addConnection(FullConnection(inlayer, octaveLayer))
    net.addConnection(FullConnection(inlayer, noteLayer))
    # net.addConnection(FullConnection(octaveLayer,combinedLayer))
    for i in range(5):
        net.addConnection(
            FullConnection(
                octaveLayer, combinedLayer, inSliceFrom=i, inSliceTo=i + 1, outSliceFrom=i * 12, outSliceTo=(i + 1) * 12
            )
        )
    net.addConnection(FullConnection(noteLayer, combinedLayer))
    net.addConnection(FullConnection(combinedLayer, outlayer))

    net.sortModules()

    # train the network on the dataset
    print "Training neural net"
    trainer = RPropMinusTrainer(net, dataset=ds)
    ##    trainer.trainUntilConvergence(maxEpochs=50, verbose=True, validationProportion=0.1)
    error = -1
    for i in range(150):
        new_error = trainer.train()
        print "error: " + str(new_error)
        if abs(error - new_error) < 0.005:
            break
        error = new_error

    # save the network
    print "Saving neural network..."
    NetworkWriter.writeToFile(net, os.path.basename(dirname) + "designnet")
# build our recurrent network with 10 hidden neurodes, one recurrent
# connection, using tanh activation functions
net = RecurrentNetwork()
hidden_neurodes = 10
net.addInputModule(LinearLayer(len(train_set["input"][0]), name="in"))
net.addModule(TanhLayer(hidden_neurodes, name="hidden1"))
net.addOutputModule(LinearLayer(len(train_set["target"][0]), name="out"))
net.addConnection(FullConnection(net["in"], net["hidden1"], name="c1"))
net.addConnection(FullConnection(net["hidden1"], net["out"], name="c2"))
net.addRecurrentConnection(
    FullConnection(net["out"], net["hidden1"], name="cout"))
net.sortModules()
net.randomize()

# train for 30 epochs (overkill) using the rprop- training algorithm
trainer = RPropMinusTrainer(net, dataset=train_set, verbose=True)
trainer.trainOnDataset(train_set, 30)

# test on training set
predictions_train = np.array(
    [net.activate(train_set["input"][i])[0] for i in xrange(len(train_set))])
plt.plot(train_set["target"], c="k")
plt.plot(predictions_train, c="r")
plt.show()

# and on test set
predictions_test = np.array(
    [net.activate(test_set["input"][i])[0] for i in xrange(len(test_set))])
plt.plot(test_set["target"], c="k")
plt.plot(predictions_test, c="r")
plt.show()
Пример #32
0
ds = SupervisedDataSet(200 * 60 * 3, 1)

for i in range(len(files)):
    img = Image.open("img/" + files[i])
    data = np.array(img)
    data = data.reshape(-1)
    ds.addSample((data), (files[i][0:6]))

img1 = Image.open("test_img/152830.png")

data1 = np.array(img1)
data1 = data1.reshape(-1)

net = buildNetwork(200 * 60 * 3, 1)

trainer = RPropMinusTrainer(net)
trainer.setData(ds)

trainer.trainEpochs(100)


def calculation(a, b):
    i = 0
    if ((int(a) // 100000) % 10 == (int(b) // 100000) % 10):
        i = i + 1
    if ((int(a) // 10000) % 10 == (int(b) // 10000) % 10):
        i = i + 1
    if ((int(a) // 1000) % 10 == (int(b) // 1000) % 10):
        i = i + 1
    if ((int(a) // 100) % 10 == (int(b) // 100) % 10):
        i = i + 1
Пример #33
0
# one output neuron per class
training_dataset._convertToOneOfMany(bounds=[0, 1])

# same for the independent test data set
testing_dataset = generate_data(test=True)
testing_dataset._convertToOneOfMany(bounds=[0, 1])

# build a feed-forward network with 20 hidden units, plus
# a corresponding trainer
fnn = buildNetwork(training_dataset.indim,
                   15,
                   15,
                   training_dataset.outdim,
                   outclass=SoftmaxLayer)
#trainer = BackpropTrainer( fnn, dataset=training_dataset,verbose=True)
trainer = RPropMinusTrainer(fnn, dataset=training_dataset, verbose=True)

for i in range(500):
    # train the network for 1 epoch
    trainer.trainEpochs(15)

    # evaluate the result on the training and test data
    trnresult = percentError(trainer.testOnClassData(),
                             training_dataset['class'])
    tstresult = percentError(trainer.testOnClassData(dataset=testing_dataset),
                             testing_dataset['class'])

    # print the result
    print "epoch: %4d" % trainer.totalepochs, \
          "  train error: %5.2f%%" % trnresult, \
          "  test error: %5.2f%%" % tstresult
Пример #34
0
LSTMClassificationNet.addConnection(FullConnection(LSTMClassificationNet['hidden0'], LSTMClassificationNet['hidden1'], name='h0-to-h1'))
LSTMClassificationNet.addConnection(FullConnection(LSTMClassificationNet['hidden1'], LSTMClassificationNet['out'], name='h1-to-out'))

LSTMClassificationNet.addConnection(FullConnection(LSTMClassificationNet['bias0'], LSTMClassificationNet['hidden0'], name='bias0-to-h0'))
LSTMClassificationNet.addConnection(FullConnection(LSTMClassificationNet['bias1'], LSTMClassificationNet['hidden1'], name='bias1-to-h1'))

LSTMClassificationNet.addRecurrentConnection(FullConnection(LSTMClassificationNet['hidden0'], LSTMClassificationNet['hidden0'], name='h0-to-h0'))
LSTMClassificationNet.addRecurrentConnection(FullConnection(LSTMClassificationNet['hidden1'], LSTMClassificationNet['hidden1'], name='h1-to-h1'))
LSTMClassificationNet.sortModules()


# LSTMClassificationNet = buildNetwork(trndata.indim,20,trndata.outdim, hiddenclass=LSTMLayer, 
#                                      outclass=SoftmaxLayer, bias=True, recurrent=True, outputbias=False) 
print "Total Number of weights:",LSTMClassificationNet.paramdim
trainer = RPropMinusTrainer(LSTMClassificationNet, dataset=trndata, verbose=True, weightdecay=0.01)
    
tstErrorCount=0
oldtstError=0
trn_error=[]
tst_error=[]
trn_class_accu=[]
tst_class_accu=[]
        
trnErrorPath='20LSTMCell/trn_error'
tstErrorPath='20LSTMCell/tst_error'
trnClassErrorPath='20LSTMCell/trn_ClassAccu'
tstClassErrorPath='20LSTMCell/tst_ClassAccu'
networkPath='20LSTMCell/TrainUntilConv.xml'
figPath='20LSTMCell/ErrorGraph'
 
Пример #35
0
    n.addModule(layer)
n.addOutputModule(outLayer)

n.addConnection(FullConnection(inLayer, hiddenLayers[0]))

for i in range(1, len(hiddenLayers)):
    n.addConnection(FullConnection(hiddenLayers[i - 1], hiddenLayers[i]))

n.addConnection(FullConnection(hiddenLayers[len(hiddenLayers) - 1], outLayer))
n.sortModules()


# training set
DS = SupervisedDataSet(10, 5)

trainer = RPropMinusTrainer(n, verbose=True, batchlearning=True, learningrate=0.01, lrdecay=0.0, momentum=0.0,
                            weightdecay=0.0)
trainer.setData(DS)

data = days('btceUSD.days.csv')


def normalize(v, _max, _min):
    return 2.0 / (_max - _min) * (v - _min) - 1.0


def denormalize(v, _max, _min):
    return (v + 1.0) / 2.0 * (_max - _min) + _min


def ticks_to_inputs_outputs(ticks, ticks_forecast):
    window_prices = map(lambda (x): x[0], ticks)
                    nr.append(ratio)
                print ratio, column
            else:
                print column, "not an int or long"
    return np.array(nr[:-1]), nr[-1]


data = cursor.execute("select %s from adult_data" % columns).fetchall()

dataset = SupervisedDataSet(8, 1)
for row in data:
    xd, yd = createNPRow(row)
    dataset.addSample(xd, yd)

nn = buildNetwork(8, 3, 1)
trainer = RPropMinusTrainer(nn)
trainer.setData(dataset)

for x in range(5):
    error = trainer.train()
    print error

errors, success = 0, 0
for row in cursor.execute("select %s from adult_test" % columns).fetchall():
    xd, yd = createNPRow(row)
    check = int(round(nn.activate(xd[:8])[0]))
    if check > 1: check = 1
    prediction = possibilities['relation_to_50k_plus'][check]
    actual = possibilities['relation_to_50k_plus'][yd]
    if prediction == actual:
        match = "match"
Пример #37
0
class NET():
    def __init__(self, inputsize, outputsize, hiden=[1]):
        self.inputsize = inputsize
        self.outputsize = outputsize
        self.hiden = hiden
        self.err = 1
        self.old_err = 1
        #print type(self.hiden)
        if type(self.hiden) == str:
            #print "type str"
            self.hiden = self.hiden[1:-1]
            b = self.hiden.split(", ")
            c = []
            for i in b:
                c.append(int(i))
            self.hiden = c[:]
        b = []
        b.append(self.inputsize)
        b += self.hiden
        b.append(self.outputsize)
        #print b#"%s, %s, %s, hiddenclass=TanhLayer"%(self.inputsize, self.hiden, self.outputsize)
        self.net = FeedForwardNetwork()
        self.inputlayer = LinearLayer(self.inputsize, "Input")
        self.net.addInputModule(self.inputlayer)
        self.outputlayer = LinearLayer(self.outputsize, "Output")
        self.net.addOutputModule(self.outputlayer)
        self.hidenlayers = []
        for i in xrange(len(self.hiden)):
            self.hidenlayers.append(SigmoidLayer(self.hiden[i], "hiden%s" % i))
            self.net.addModule(self.hidenlayers[-1])
        self.net.addConnection(
            FullConnection(self.inputlayer, self.outputlayer))
        for i in xrange(len(self.hidenlayers)):
            self.net.addConnection(
                FullConnection(self.inputlayer, self.hidenlayers[i]))
            self.net.addConnection(
                FullConnection(self.hidenlayers[i], self.outputlayer))
        for i in xrange(len(self.hidenlayers)):
            for j in xrange(i + 1, len(self.hidenlayers)):
                self.net.addConnection(
                    FullConnection(self.hidenlayers[i], self.hidenlayers[j]))
                #self.print_conections(self.net)
        self.net.sortModules()
        self.ds = SupervisedDataSet(self.inputsize, self.outputsize)

    def Update(self, hiden, h):
        self.net = FeedForwardNetwork()
        self.inputlayer = LinearLayer(self.inputsize, "Input")
        self.net.addInputModule(self.inputlayer)
        self.outputlayer = LinearLayer(self.outputsize, "Output")
        self.net.addOutputModule(self.outputlayer)
        self.hidenlayers = []
        for i in xrange(len(hiden)):
            self.hidenlayers.append(SigmoidLayer(hiden[i], "hiden%s" % i))
            self.net.addModule(self.hidenlayers[-1])
        self.net.addConnection(
            FullConnection(self.inputlayer, self.outputlayer))
        for i in xrange(len(self.hidenlayers)):
            self.net.addConnection(
                FullConnection(self.inputlayer, self.hidenlayers[i]))
            self.net.addConnection(
                FullConnection(self.hidenlayers[i], self.outputlayer))
        for i in xrange(len(self.hidenlayers)):
            for j in xrange(i + 1, len(self.hidenlayers)):
                if i < h:
                    self.net.addConnection(
                        FullConnection(self.hidenlayers[i],
                                       self.hidenlayers[j]))
                elif i == h:
                    self.net.addConnection(
                        FullConnection(self.hidenlayers[i],
                                       self.hidenlayers[j],
                                       inSliceTo=hiden[i] - 1))
                else:
                    self.net.addConnection(
                        FullConnection(self.hidenlayers[i],
                                       self.hidenlayers[j]))
                #self.print_conections(self.net)
        self.net.sortModules()
        self.hiden = hiden

    def print_conections(self, n):
        print("BEGIN")
        for mod in n.modules:
            print(mod)
            for conn in n.connections[mod]:
                print(conn)
                for cc in range(len(conn.params)):
                    print(conn.whichBuffers(cc), conn.params[cc])
        print("END")

    def AddData(self, datainput, dataoutput):
        if len(dataoutput) != len(datainput):
            print("Not equals data", len(dataoutput), len(datainput))
            return 1
        self.ds = SupervisedDataSet(self.inputsize, self.outputsize)
        for i in xrange(len(dataoutput)):
            self.ds.appendLinked(datainput[i], dataoutput[i])
        self.trainer = RPropMinusTrainer(self.net,
                                         dataset=self.ds,
                                         learningrate=0.1)
        return 0

    def AddDataSequential(self, data):
        self.ds = SequentialDataSet(self.inputsize, self.outputsize)
        for i in xrange(len(data) - 1, 0, -1):

            t = data[i]
            k = i - 1
            while k > -1:
                self.ds.appendLinked(data[k], t)
                k -= 1
            self.ds.newSequence()
        """print self.ds.getNumSequences()
		for i in range(self.ds.getNumSequences()):
			for input, target in self.ds.getSequenceIterator(i):
				print i, TransToIntList_45(input), TransToIntList_45(target)"""
        self.trainer = RPropMinusTrainer(self.net,
                                         dataset=self.ds,
                                         learningrate=0.1)
        return 0

    def TrainNet(self, epoch, error):

        if epoch <= 5:
            epoch = 5
        i = 0
        count = 0
        while i < epoch:
            if error == self.err:
                break
            self.err = self.trainer.train()
            if self.err == self.old_err:
                count += 1
            else:
                count = 0
            if count == 3:
                self.err = self.old_err
                return (self.err, 1)
            self.old_err = self.err
            i += 1
        #self.SaveNet('%s  %s_%s_%s.work'%(self.err, self.inputsize, self.hiden, self.outputsize))
        return [self.err, 0]

    def TrainNetOnce(self):

        self.err = self.trainer.train()

        return self.err

    def SaveNet(self, filename=None):
        if filename == None:
            NetworkWriter.writeToFile(
                self.net, '%s  %s_%s_%s.xml' %
                (self.err, self.inputsize, self.hiden, self.outputsize))
        else:
            NetworkWriter.writeToFile(self.net, filename)

    def LoadNet(self, fname):
        self.net = NetworkReader.readFrom(fname)
        tree = ET.parse(fname)
        x = tree.getroot()
        l = []
        for modules in x.findall('Network/Modules/SigmoidLayer/dim'):
            l.append(int(modules.get("val")))
        self.hiden = l[:]
        self.inputsize = self.net.indim
        self.outputsize = self.net.outdim

    def TestNet(self, inp):
        if len(inp) != self.inputsize:
            return 0
        return self.net.activate(inp[:])

    def UpdateWeights(self, f1, f2=None):
        n = NetworkReader.readFrom(f1)
        if f2 != None:
            n2 = NetworkReader.readFrom(f2)

        def DictParams(n):
            l1 = []
            for mod in n.modules:
                l = []
                for conn in n.connections[mod]:

                    if conn.paramdim > 0:

                        l.append([conn.outmod.name, conn.params])
                d = dict(l)
                l1.append([mod.name, d])
            d1 = dict(l1)
            return d1

        d1 = DictParams(n)
        if f2 != None:
            d2 = DictParams(n2)
        d3 = DictParams(self.net)

        params = np.array([])
        if f2 != None:
            for i in d2:
                for j in d2[i]:
                    b = d3[i][j][:]
                    b[:d2[i][j].size] = d2[i][j][:]
                    d3[i].update({j: b})
        for i in d1:
            for j in d1[i]:
                b = d3[i][j][:]
                b[:d1[i][j].size] = d1[i][j][:]
                d3[i].update({j: b})
        for i in d3["Input"]:
            params = np.hstack((params, d3["Input"][i]))
        for i in xrange(len(self.hiden)):
            for j in d3["hiden%s" % i]:
                params = np.hstack((params, d3["hiden%s" % i][j]))
        self.net._setParameters(params)
def train_nn():
    vta = MLFMFCCOnlineAlignedArray(usec0=False, n_last_frames=n_last_frames)
    # vta.append_mlf(mlf_sil)
    # vta.append_trn(train_data_sil)
    vta.append_mlf(mlf_speech)
    vta.append_trn(train_data_speech)

    mfcc = vta.__iter__().next()

    print "MFCC length:", len(mfcc[0])
    input_size = len(mfcc[0])

    if sigmoid:
        net = buildNetwork(input_size,n_hidden_units,n_hidden_units,n_hidden_units,n_hidden_units,2, hiddenclass=SigmoidLayer, outclass=SoftmaxLayer,
                           bias = True, fast = arac)
    else:
        net = buildNetwork(input_size,n_hidden_units,n_hidden_units,n_hidden_units,n_hidden_units,2, hiddenclass=TanhLayer, outclass=SoftmaxLayer,
                           bias = True, fast = arac)

    dc_acc = deque(maxlen=20)
    dt_acc = deque(maxlen=20)


    print "Generating the MFCC features"
    vta_new = []
    i = 0
    for frame, label in vta:
        if i % (n_max_frames / 10) == 0:
            print "Already processed: %.2f%% of data" % (100.0*i/n_max_frames)

        if i > n_max_frames:
            break
        i += 1

        vta_new.append((frame, label))
    vta = vta_new

    for epoch in range(n_max_epoch):
        i = 1
        m = 0
        ds = SupervisedDataSet(input_size, 2)

        c_acc = 0.0
        c_sil = 0.0
        t_acc = 0.0
        t_sil = 0.0

        for frame, label in vta:
            #print frame
            if (i % n_max_frames_per_minibatch) != 0:
                if label == "sil":
                    ds.addSample(frame, (1,0))
                else:
                    ds.addSample(frame, (0,1))
            else:
                a = net.activateOnDataset(ds)
                acc, sil = get_accuracy(ds, a)

                print
                print "-"*120
                if m < n_crossvalid_minibatches:
                    print "Cross-validation"

                    c_acc = running_avg(c_acc, m, acc)
                    c_sil = running_avg(c_sil, m, sil)

                else:
                    print "Training"
                    t_acc = running_avg(t_acc, m - n_crossvalid_minibatches, acc)
                    t_sil = running_avg(t_sil, m - n_crossvalid_minibatches, sil)

                    if bprop:
                        trainer = BackpropTrainer(net, dataset = ds)
                    else:
                        trainer = RPropMinusTrainer(net, dataset = ds)
	
                    trainer.train()

                m += 1


                print
                print "n_max_frames, max_files, max_frames_per_segment, trim_segments, n_max_epoch, n_max_frames_per_minibatch, n_hidden_units, sigmoid, arac, n_last_frames, n_crossvalid_minibatches, bprop"
                print n_max_frames, max_files, max_frames_per_segment, trim_segments, n_max_epoch, n_max_frames_per_minibatch, n_hidden_units, sigmoid, arac, n_last_frames, n_crossvalid_minibatches, bprop

                print "Epoch: %d Mini-batch: %d" % (epoch, m)
                print
                print "Cross-validation stats"
                print "------------------------"
                print "Epoch predictive accuracy:  %0.2f" % c_acc
                print "Last epoch accs:", ["%.2f" % x for x in dc_acc]
                print "Epoch sil bias: %0.2f" % c_sil
                print
                print "Training stats"
                print "------------------------"
                print "Epoch predictive accuracy:  %0.2f" % t_acc
                print "Last epoch accs:", ["%.2f" % x for x in dt_acc]
                print "Epoch sil bias: %0.2f" % t_sil

                print
                print "Minibatch stats"
                print "------------------------"
                print "Mini-batch predictive accuracy: %0.2f" % acc
                print "Mini-batch sil bias: %0.2f" % sil


                ds = SupervisedDataSet(input_size, 2)

            i += 1

        dc_acc.append(c_acc)
        dt_acc.append(t_acc)
Пример #39
0
		testset.append((a,random.uniform(-math.pi/2,math.pi/2),1))
		testset.append((a,random.uniform(-math.pi,-math.pi/2),-1))
		testset.append((a,random.uniform(math.pi/2,math.pi),-1))

	elif a == 1:
		testset.append((a,random.uniform(-math.pi,0),1))
		testset.append((a,random.uniform(0,math.pi),-1))
	else:
		testset.append((a,random.uniform(0,math.pi),1))
		testset.append((a,random.uniform(-math.pi,0),-1))


ann = buildNetwork(2,20,1,bias=True,hiddenclass=TanhLayer)
ds = SupervisedDataSet(2,1)
ann.sortModules()
trainer = RPropMinusTrainer(ann)
trainer.setData(ds)
for i in dataset:
	ds.addSample((i[0],i[1]),i[2])

i=10000
x=0
z=100
while i > 0.0001 and x<z:
	i = trainer.train()
	print i
	x+=1

for a in testset:
	result = ann.activate([a[0],a[1]])
	print str(a[2]) +" actual vs. output " +str(result)
Пример #40
0
def BnTNN(ds, hiddensize, epoches):
    net = buildNetwork(ds.indim, hiddensize, ds.outdim, outclass=SoftmaxLayer)
    st = time()
    trainer = RPropMinusTrainer(net, dataset=ds, momentum=0.1, verbose=True, weightdecay=0.01)#
    trainer.trainEpochs( epoches )
    return net
Пример #41
0
class FFNetwork(Network):
    def __init__(self, sensor_ids, action_ids, n_hidden, bias=True):
        super(FFNetwork, self).__init__(sensor_ids=sensor_ids, action_ids=action_ids)
        self.net = buildNetwork(SensorModel.array_length(sensor_ids), n_hidden, 1,
                                hiddenclass=TanhLayer,
                                #outclass=TanhLayer,
                                bias=bias)
        self.scaler_input = None
        self.trainer = None

    def save(self, filename):
        with open(filename, 'wb') as f:
            pickle.dump(self, f)

    def load(self, filename):
        with open(filename, 'rb') as f:
            ffn = pickle.load(f)
        self.net = ffn.net
        self.sensor_ids = ffn.sensor_ids
        self.action_ids = ffn.action_ids
        self.scaler_input = ffn.scaler_input
        del ffn

    def get_action(self, sensors):
        x = sensors.get_array(self.sensor_ids)
        if self.scaler_input is not None:
            x = self.scaler_input.transform(x)
        return self.net.activate(x)[0]

    def get_params(self):
        pass

    def train(self, training_files, learningrate=0.01, scaling=True, noise=False, verbose=True):
        print "building dataset..."
        ds = SupervisedDataSet(SensorModel.array_length(self.sensor_ids), 1)
        # read training file line, create sensormodel object, do backprop
        a = None
        s = None
        for logfile in training_files:
            print "loading file", logfile
            with open(logfile) as f:
                for line in f:
                    if line.startswith("Received:"):
                        s = SensorModel(string=line.split(' ', 1)[1])
                    elif line.startswith("Sending:"):
                        a = Actions.from_string(string=line.split(' ', 1)[1])
                    if s is not None and a is not None:
                        ds.addSample(inp=s.get_array(self.sensor_ids), target=a[self.action_ids[0]])
                        if noise:
                            # add the same training sample again but with noise in the sensors
                            s.add_noise()
                            ds.addSample(inp=s.get_array(self.sensor_ids), target=a[self.action_ids[0]])
                        s = None
                        a = None
        print "dataset size:", len(ds)
        if scaling:
            print "scaling dataset"
            self.scaler_input = StandardScaler(with_mean=True, with_std=False).fit(ds.data['input'])
            ds.data['input'] = self.scaler_input.transform(ds.data['input'])
            ds.data['target'] = ds.data['target']
        #self.trainer = BackpropTrainer(self.net, learningrate=learningrate, verbose=verbose)
        self.trainer = RPropMinusTrainer(self.net, verbose=verbose, batchlearning=True)
        print "training network..."
        self.trainer.trainUntilConvergence(dataset=ds, validationProportion=0.25, maxEpochs=10, continueEpochs=2)
                    ratio = float(float(num) / float(len(possibilities[names[i]])))
                    nr.append(ratio)    
                print ratio, column   
            else:
                print column, "not an int or long"         
    return np.array(nr[:-1]), nr[-1]

data = cursor.execute("select %s from adult_data" % columns).fetchall()

dataset = SupervisedDataSet(8, 1)
for row in data:
    xd, yd = createNPRow(row)       
    dataset.addSample(xd, yd)

nn = buildNetwork(8, 3, 1)
trainer = RPropMinusTrainer(nn)
trainer.setData(dataset)

for x in range(5):
    error = trainer.train()
    print error
  
errors, success = 0,0
for row in cursor.execute("select %s from adult_test" % columns).fetchall():    
    xd, yd = createNPRow(row)    
    check = int(round(nn.activate(xd[:8])[0]))
    if check > 1: check = 1
    prediction = possibilities['relation_to_50k_plus'][check]
    actual = possibilities['relation_to_50k_plus'][yd]
    if prediction == actual:
        match = "match"
train_set, test_set = DS.splitWithProportion(0.7)

# build our recurrent network with 10 hidden neurodes, one recurrent
# connection, using tanh activation functions
net = RecurrentNetwork()
hidden_neurodes = 10
net.addInputModule(LinearLayer(len(train_set["input"][0]), name="in"))
net.addModule(TanhLayer(hidden_neurodes, name="hidden1"))
net.addOutputModule(LinearLayer(len(train_set["target"][0]), name="out"))
net.addConnection(FullConnection(net["in"], net["hidden1"], name="c1"))
net.addConnection(FullConnection(net["hidden1"], net["out"], name="c2"))
net.addRecurrentConnection(FullConnection(net["out"], net["hidden1"], name="cout"))
net.sortModules()
net.randomize()

# train for 30 epochs (overkill) using the rprop- training algorithm
trainer = RPropMinusTrainer(net, dataset=train_set, verbose=True)
trainer.trainOnDataset(train_set, 30)

# test on training set
predictions_train = np.array([net.activate(train_set["input"][i])[0] for i in xrange(len(train_set))])
plt.plot(train_set["target"], c="k")
plt.plot(predictions_train, c="r")
plt.show()

# and on test set
predictions_test = np.array([net.activate(test_set["input"][i])[0] for i in xrange(len(test_set))])
plt.plot(test_set["target"], c="k")
plt.plot(predictions_test, c="r")
plt.show()
def train_network(options_file_location,training_data_location,output_location):
    training_file_handle = open(training_data_location,"r")
    training_reader = csv.reader(training_file_handle)
   
    stdout_file = output_location+'training_console_output.txt'
    stderr_file = output_location+'training_console_errput.txt'
    
    sys.stdout = open(stdout_file,"w")
    sys.stderr = open(stderr_file,"w")

    
    options_file_location = options_file_location
    options_file_handle = open(options_file_location,'r')
    options_dictionary = {}
    
    for option in options_file_handle.readlines():
        key,val = option.split('=')
        print key
        print val
        options_dictionary[key] = val;

    num_predictors = int(options_dictionary['num_predictors'])
    num_outputs = int(options_dictionary['num_outputs'])
    num_training_epochs = int(options_dictionary['num_training_epochs'])
    num_hidden_neurons = int(options_dictionary['num_hidden_neurons'])
    num_classes = int((options_dictionary['num_classes']))
    hidden_neuron_type_str = options_dictionary['hidden_neuron_type']
    output_neuron_type_str = options_dictionary['output_neuron_type']
    
    hidden_layer_type,output_layer_type = net_topol.get_layer_types(options_dictionary)
    
    training_dataset = SequenceClassificationDataSet(num_predictors, 1,num_classes)

    previous_sequence_number = 1
    
    #read data into dataset objects
    print 'reading in training data...'
    for row in training_reader:
        #convert list of strings to list of floats
        list = [float(s) for s in row]
        
        #split input line
        predictors = list[0:num_predictors]
        
        #+1 is to skip over the sequence column
        outputs = list[num_predictors+1:num_predictors+1+num_outputs]
        
        #convert from python list to numpy array
        predictors = np.array(predictors)
        outputs = np.array(outputs)
        
        
        sequence_number = math.trunc(list[num_predictors])
        
        if not sequence_number==previous_sequence_number:
            # print sequence_number
            # print previous_sequence_number
            training_dataset.newSequence()
        
        previous_sequence_number = sequence_number
        
        #add to dataset
        training_dataset.appendLinked(predictors, outputs)

    
    
    network = shortcuts.buildNetwork(num_predictors, num_hidden_neurons, num_outputs, hiddenclass=LSTMLayer, outclass=SoftmaxLayer)
    network.sortModules();
    
    training_dataset._convertToOneOfMany();
    
    print str(network)
    print str(training_dataset)
    
    trainer = RPropMinusTrainer(module=network, dataset=training_dataset)

    for i in range(num_training_epochs):
        print 'Starting training epoch: '+str(i)
        trainer.trainEpochs(1)
        sys.stdout.flush()
    
    network_file_location = output_location+'trained_network.xml'
    NetworkWriter.writeToFile(network, network_file_location)
    
    done_file_handle = open(output_location+'training_done.txt',"w")
    done_file_handle.write('%s' % 'done!')
    done_file_handle.close()
Пример #45
0
append2DS(DS, snd_18768, 0, nClasses)
# piano
snd_21649 = load_snd(21649)
append2DS(DS, snd_21649, 1, nClasses)
# clock
snd_20043 = load_snd(20043)
append2DS(DS, snd_20043, 2, nClasses)

# fnn = buildNetwork(1, 15, 5, hiddenclass = LSTMLayer, outclass = SoftmaxLayer, outputbias = False, recurrent = True)

fnn = buildNetwork(1, 1, nClasses, hiddenclass=LSTMLayer, outclass=TanhLayer, outputbias=False, recurrent=True)

# Create a trainer for backprop and train the net.
# trainer = BackpropTrainer(fnn, DStrain, learningrate = 0.005)

trainer = RPropMinusTrainer(fnn, dataset=DS, verbose=True)

for i in range(4):
    # train the network for 1 epoch
    trainer.trainEpochs(1)
    print trainer.train()

fnn.reset()
summed = numpy.zeros(nClasses)
for sample in snd_18768:
    summed += fnn.activate([sample])
print summed / len(snd_18768)

fnn.reset()
summed = numpy.zeros(nClasses)
for sample in snd_21649:
Пример #46
0
    fnn.sorted = False
    fnn.sortModules()
else:
    fnn = buildNetwork(
        segments,
        nHidden,
        segments,
        hiddenclass=LSTMLayer,
        outclass=TanhLayer,
        outputbias=True,
        recurrent=True,
        peepholes=False,
        fast=False,
    )

trainer = RPropMinusTrainer(fnn, dataset=DS, verbose=True)

print "Begin training..."

# Train the network
trainer.trainEpochs(nEpoch)

# Store the encoder
file = open("autoencoder-%i.xml" % (nHidden), "w")
pickle.dump(fnn, file)
file.close()

# Show an example
id = 86464
cochleogram = data.load_cochleogram(id)
fnn.reset()

training_dataset = generate_data()
# neural networks work better if classes are encoded using 
# one output neuron per class
training_dataset._convertToOneOfMany( bounds=[0,1] )

# same for the independent test data set
testing_dataset = generate_data(test=True)
testing_dataset._convertToOneOfMany( bounds=[0,1] )

# build a feed-forward network with 20 hidden units, plus 
# a corresponding trainer
# fnn = buildNetwork( training_dataset.indim, 15,15, training_dataset.outdim, outclass=SoftmaxLayer )
fnn = buildNetwork( training_dataset.indim, 15, training_dataset.outdim, hiddenclass=LSTMLayer, outclass=SoftmaxLayer, outputbias=False, recurrent=True)
trainer = RPropMinusTrainer( fnn, dataset=training_dataset, verbose=True )
#trainer = BackpropTrainer( fnn, dataset=training_dataset,verbose=True)

for i in range(500):
    # train the network for 1 epoch
    trainer.trainEpochs( 15 )
    
    # evaluate the result on the training and test data
    trnresult = percentError( trainer.testOnClassData(), 
                              training_dataset['class'] )
    tstresult = percentError( trainer.testOnClassData( 
           dataset=testing_dataset ), testing_dataset['class'] )

    # print the result
    print "epoch: %4d" % trainer.totalepochs, \
          "  train error: %5.2f%%" % trnresult, \
Пример #48
0
    arg = (i / n) * 6 - 3
    x.append(arg)
    r = f(arg) + (random() - 0.5) * 0.2
    y.append(f(arg))
    y_noise.append(r)
    ds.addSample((arg), (r))

trainer_big = BackpropTrainer(net_big,
                              ds,
                              learningrate=0.01,
                              lrdecay=1.0,
                              momentum=0.0,
                              weightdecay=0.0)

#  RProp-, cf. [Igel&Huesken, Neurocomputing 50, 2003
trainer = RPropMinusTrainer(net, dataset=ds)

# trainer.trainUntilConvergence()

for i in range(100):
    trainer.train()

for i in range(10):
    trainer_big.train()

for i in range(n):
    arg = (i / n) * 6 - 3
    y_n.append(net.activate([arg]))
    y_n_big.append(net_big.activate([arg]))

fig = plt.figure()
Пример #49
0
    def recurrent_neural_network(self,
                                 train_X,
                                 train_y,
                                 test_X,
                                 test_y,
                                 n_hidden_neurons=50,
                                 iterations=100,
                                 gridsearch=False,
                                 gridsearch_training_frac=0.7,
                                 outputbias=False,
                                 error='accuracy'):

        if gridsearch:
            n_hidden_neurons, iterations, outputbias = self.gridsearch_recurrent_neural_network(
                train_X,
                train_y,
                test_X,
                test_y,
                gridsearch_training_frac=gridsearch_training_frac,
                error=error)
        # Create numerical datasets first.
        new_train_X, new_test_X = self.create_numerical_multiple_dataset(
            train_X, test_X)
        new_train_y, new_test_y = self.create_numerical_multiple_dataset(
            train_y, test_y)

        # We normalize the input.....
        new_train_X, new_test_X, min_X, max_X = self.normalize(
            new_train_X, new_test_X, 0, 1)
        new_train_y, new_test_y, min_y, max_y = self.normalize(
            new_train_y, new_test_y, 0.1, 0.9)

        # Create the proper pybrain datasets.
        ds_training = self.rnn_dataset(new_train_X, new_train_y)
        ds_test = self.rnn_dataset(new_test_X, new_test_y)

        inputs = len(new_train_X.columns)
        outputs = len(new_train_y.columns)

        # Build the network with the proper parameters.
        n = buildNetwork(inputs,
                         n_hidden_neurons,
                         outputs,
                         hiddenclass=SigmoidLayer,
                         outclass=SigmoidLayer,
                         outputbias=outputbias,
                         recurrent=True)

        # Train using back propagation through time.
        #trainer = BackpropTrainer(n, dataset=ds_training, verbose=False, momentum=0.9, learningrate=0.01)
        trainer = RPropMinusTrainer(n, dataset=ds_training, verbose=False)

        for i in range(0, iterations):
            trainer.train()

#        for mod in n.modules:
#            for conn in n.connections[mod]:
#                print conn
#                for cc in range(len(conn.params)):
#                    print conn.whichBuffers(cc), conn.params[cc]

# Determine performance on the training and test set....
#        Y_train = []
#        for i in range(0, len(new_train_X.index)):
#            input = tuple(new_train_X.ix[i,:].values)
#            output = n.activate(input)
#            Y_train.append(output)
#        Y_test = []
#        for i in range(0, len(new_test_X.index)):
#            Y_test.append(n.activate(tuple(new_test_X.ix[i,:].values)))

        Y_train = []
        Y_test = []

        for sample, target in ds_training.getSequenceIterator(0):
            Y_train.append(n.activate(sample).tolist())

        for sample, target in ds_test.getSequenceIterator(0):
            Y_test.append(n.activate(sample).tolist())

        y_train_result = pd.DataFrame(Y_train,
                                      columns=new_train_y.columns,
                                      index=train_y.index)
        y_test_result = pd.DataFrame(Y_test,
                                     columns=new_test_y.columns,
                                     index=test_y.index)

        #        print y_train_result

        y_train_result = self.denormalize(y_train_result, min_y, max_y, 0.1,
                                          0.9)
        y_test_result = self.denormalize(y_test_result, min_y, max_y, 0.1, 0.9)

        #        plot.plot(train_y.index, train_y)
        #        plot.hold(True)
        #        plot.plot(train_y.index, pred_train_y_prob)
        #        plot.show()

        return y_train_result.idxmax(axis=1), y_test_result.idxmax(
            axis=1), y_train_result, y_test_result
Пример #50
0
 def train(self, epoch):
     self.ds._convertToOneOfMany( )
     trainer = RPropMinusTrainer(self.net, dataset=self.ds, momentum=0.1, verbose=True, weightdecay=0.01)
     trainer.trainEpochs( epoch )