Пример #1
0
def xmlInvariance(n, forwardpasses=1):
    """ try writing a network to an xml file, reading it, rewrite it, reread it, and compare
    if the result looks the same (compare string representation, and forward processing 
    of some random inputs) """
    tmpfile = tempfile.NamedTemporaryFile()
    f = tmpfile.name
    NetworkWriter.writeToFile(n, f)
    tmpnet = NetworkReader.readFrom(f)
    NetworkWriter.writeToFile(tmpnet, f)
    endnet = NetworkReader.readFrom(f)
    netCompare(tmpnet, endnet, forwardpasses, True)
Пример #2
0
def xmlInvariance(n, forwardpasses = 1):
    """ try writing a network to an xml file, reading it, rewrite it, reread it, and compare
    if the result looks the same (compare string representation, and forward processing 
    of some random inputs) """
    tmpfile = tempfile.NamedTemporaryFile()
    f = tmpfile.name
    NetworkWriter.writeToFile(n, f)
    tmpnet = NetworkReader.readFrom(f)
    NetworkWriter.writeToFile(tmpnet, f)
    endnet = NetworkReader.readFrom(f)
    netCompare(tmpnet, endnet, forwardpasses, True)
Пример #3
0
def init_model():
    global model
    with open('./data/list_person.txt', 'r') as lpfile:
        row_count = sum(1 for row in lpfile)
    for i in range(1, row_count + 1):
        net = NetworkReader.readFrom('./model/net%d.xml' % i)
        model.insert(model.__len__(), net)
Пример #4
0
def recog_tower():

    network = NetworkReader.readFrom("tower.xml")

    tokyo_image_files = glob.glob("r/t*")

    tokyo_correct_count = 0
    for image_path in tokyo_image_files:
        image = cv2.imread(image_path)

        data = [0] * 64
        for row_num in range(image.shape[1]):
            for col_num in range(image.shape[0]):
                blue = declease_color(image[col_num, row_num, 0])
                green = declease_color(image[col_num, row_num, 1])
                red = declease_color(image[col_num, row_num, 2])

                data[rgb2bin(red, green, blue)] += 1

        dataset = SupervisedDataSet(64, 2)
        dataset.addSample(data, [1, 0])

        out = network.activateOnDataset(dataset)
        if np.round(out)[0, 0] == 1:
            tokyo_correct_count += 1
    print "tokyo correct count: %d, tokyo correct rate: %.5f" % (
        tokyo_correct_count,
        tokyo_correct_count * 1.0 / len(tokyo_image_files),
    )

    eiffel_image_files = glob.glob("r/e*")

    eiffel_correct_count = 0
    for image_path in eiffel_image_files:
        image = cv2.imread(image_path)

        data = [0] * 64
        for row_num in range(image.shape[1]):
            for col_num in range(image.shape[0]):
                blue = declease_color(image[col_num, row_num, 0])
                green = declease_color(image[col_num, row_num, 1])
                red = declease_color(image[col_num, row_num, 2])

                data[rgb2bin(red, green, blue)] += 1

        dataset = SupervisedDataSet(64, 2)
        dataset.addSample(data, [1, 0])

        out = network.activateOnDataset(dataset)
        if np.round(out)[0, 0] == 1:
            eiffel_correct_count += 1
    print "eiffel correct count: %d, eiffel correct rate: %.5f" % (
        eiffel_correct_count,
        eiffel_correct_count * 1.0 / len(eiffel_image_files),
    )

    print "total correct count: %d, total correct rate: %.5f" % (
        tokyo_correct_count + eiffel_correct_count,
        (tokyo_correct_count + eiffel_correct_count) * 1.0 / (len(tokyo_image_files) + len(eiffel_image_files)),
    )
Пример #5
0
def main():
    filename = '15_05/100_405.xml'
    resize_files(STATIC_DIR, RESIZED_DIR)
    noise_files(RESIZED_DIR, RESIZED_DAMAGED_TEST_DIR)
    prepare_input_img(RESIZED_DAMAGED_TEST_DIR)
    cv2.imwrite('media/answers.png', np.ones((40, 30, 1)))

    net = NetworkReader.readFrom(os.path.join(NETWORKS_DIR, filename))
    slide_window_mark_numbers(net)
Пример #6
0
def xmlInvariance(n, forwardpasses = 1):
    """ try writing a network to an xml file, reading it, rewrite it, reread it, and compare
    if the result looks the same (compare string representation, and forward processing 
    of some random inputs) """
    # We only use this for file creation.
    tmpfile = tempfile.NamedTemporaryFile(dir=".")
    f = tmpfile.name
    tmpfile.close()

    NetworkWriter.writeToFile(n, f)
    tmpnet = NetworkReader.readFrom(f)
    NetworkWriter.writeToFile(tmpnet, f)
    endnet = NetworkReader.readFrom(f)

    # Unlink temporary file.
    os.unlink(f)

    netCompare(tmpnet, endnet, forwardpasses, True)
Пример #7
0
def xmlInvariance(n, forwardpasses=1):
    """ try writing a network to an xml file, reading it, rewrite it, reread it, and compare
    if the result looks the same (compare string representation, and forward processing 
    of some random inputs) """
    import os.path
    f = 'temp/xmlInvarianceTest.xml'
    if os.path.split(os.path.abspath(os.path.curdir))[1] == 'unittests':
        f = '../' + f
    NetworkWriter.writeToFile(n, f)
    tmpnet = NetworkReader.readFrom(f)
    NetworkWriter.writeToFile(tmpnet, f)
    endnet = NetworkReader.readFrom(f)
    if str(n) == str(endnet):
        print 'Same representation'
    else:
        print n
        print "-" * 80
        print endnet

    outN = zeros(n.outdim)
    outEnd = zeros(endnet.outdim)
    n.reset()
    endnet.reset()
    for dummy in range(forwardpasses):
        inp = randn(n.indim)
        outN += n.activate(inp)
        outEnd += endnet.activate(inp)

    if sum(map(abs, outN - outEnd)) < 1e-9:
        print 'Same function'
    else:
        print outN
        print outEnd

    if n.__class__ == endnet.__class__:
        print 'Same class'
    else:
        print n.__class__
        print endnet.__class__
Пример #8
0
def xmlInvariance(n, forwardpasses = 1):
    """ try writing a network to an xml file, reading it, rewrite it, reread it, and compare
    if the result looks the same (compare string representation, and forward processing 
    of some random inputs) """
    import os.path
    f = 'temp/xmlInvarianceTest.xml'
    if os.path.split(os.path.abspath(os.path.curdir))[1] == 'unittests':        
        f = '../'+f
    NetworkWriter.writeToFile(n, f)
    tmpnet = NetworkReader.readFrom(f)
    NetworkWriter.writeToFile(tmpnet, f)
    endnet = NetworkReader.readFrom(f)
    if str(n) == str(endnet):
        print 'Same representation'
    else:
        print n
        print "-" * 80
        print endnet
        
    outN = zeros(n.outdim)
    outEnd = zeros(endnet.outdim)
    n.reset()
    endnet.reset()
    for dummy in range(forwardpasses):
        inp = randn(n.indim)
        outN += n.activate(inp)
        outEnd += endnet.activate(inp)
        
    if sum(map(abs, outN - outEnd)) < 1e-9:
        print 'Same function'
    else:
        print outN
        print outEnd

    if n.__class__ == endnet.__class__:
        print 'Same class'
    else:        
        print n.__class__
        print endnet.__class__
Пример #9
0
 def build_net(self):
     if os.path.exists(self.NET_FILE):
         return NetworkReader.readFrom(self.NET_FILE)
     ds = ClassificationDataSet(len(feats), nb_classes=len(classes))
     for c in classes:
         print c
         with codecs.open(os.path.join(self.data_root, c+".txt"), 'r', 'utf8') as f:
             for line in f:
                 r = Record("11", line, c, "")
                 ds.appendLinked(r.features(), [r.class_idx()])
     ds._convertToOneOfMany([0, 1])
     net = buildNetwork(ds.indim, int((ds.indim + ds.outdim)/2), ds.outdim, bias=True, hiddenclass=TanhLayer, outclass=SoftmaxLayer)
     trainer = BackpropTrainer(net, ds, momentum=0.75, verbose=True)
     trainer.trainUntilConvergence(maxEpochs=300)
     NetworkWriter.writeToFile(net, self.NET_FILE)
     return net
Пример #10
0
def recog():

    network = NetworkReader.readFrom('gotiusa.xml')

    image_files = glob.glob('gotiusa/*')
    cascade = cv2.CascadeClassifier('lbpcascade_animeface.xml')

    for i, image_path in enumerate(image_files):

        image = cv2.imread(image_path)

        face = cascade.detectMultiScale(image, 1.1, 3)
        for (x, y, w, h) in face:
            cut_image = image[y:y+h, x:x+w]
            cv2.resize(cut_image, (80, 80))
            train_data = [0] * 64
            for row_num in range(cut_image.shape[1]):
                for col_num in range(cut_image.shape[0]):
                    blue = declease_color(cut_image[col_num, row_num, 0])
                    green = declease_color(cut_image[col_num, row_num, 1])
                    red = declease_color(cut_image[col_num, row_num, 2])

                    train_data[rgb2bin(red, green, blue)] += 1
            dataset = SupervisedDataSet(64, 1)
            dataset.addSample(train_data, [0])

            out = network.activateOnDataset(dataset)
            output = np.round(out[0, 0])

            if output == 0:
                cv2.rectangle(image, (x, y), (x + w, y + h), (0, 0, 255), 3)
            if output == 1:
                cv2.rectangle(image, (x, y), (x + w, y + h), (255, 0, 0), 3)
            if output == 2:
                cv2.rectangle(image, (x, y), (x + w, y + h), (255, 0, 255), 3)
            if output == 3:
                cv2.rectangle(image, (x, y), (x + w, y + h), (255, 255, 0), 3)
            if output == 4:
                cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 3)
        cv2.imwrite('result/%06d.jpg' % i, image)
Пример #11
0
def recog_bokkuri_tower():

    network = NetworkReader.readFrom('tower.xml')

    image = cv2.imread('bokkuritower.jpg')
    image = cv2.resize(image, (IMAGE_SIZE, IMAGE_SIZE))

    tokyo_correct_count = 0
    data = [0] * 64
    for row_num in range(image.shape[1]):
        for col_num in range(image.shape[0]):
            blue = declease_color(image[col_num, row_num, 0])
            green = declease_color(image[col_num, row_num, 1])
            red = declease_color(image[col_num, row_num, 2])

            data[rgb2bin(red, green, blue)] += 1

    dataset = SupervisedDataSet(64, 2)
    dataset.addSample(data, [1, 0])

    out = network.activateOnDataset(dataset)
    if np.round(out)[0, 0] == 1:
        tokyo_correct_count += 1
    print "tokyo correct count: %d" % tokyo_correct_count
Пример #12
0
def importCatDogRNN(fileName = root.path()+"/res/recCatDogANN"):
    n = NetworkReader.readFrom(root.path()+"/res/cat_dog_nm_params.xml")
    return n
Пример #13
0
def importCatDogRNN(fileName=root.path() + "/res/recCatDogANN"):
    n = NetworkReader.readFrom(root.path() + "/res/cat_dog_nm_params.xml")
    return n
Пример #14
0
def loadnet(net):
    net = NetworkReader.readFrom('C:\\Users\\hardy_000\\Documents\\datasci\\net.xml')
    return net
Пример #15
0
def import_network(file_path):
    return NetworkReader.readFrom(file_path)
Пример #16
0
test_data._convertToOneOfMany()
data_split = int(num_of_examples * 0.7)

# setting the field names
train_data.setField('input', X[0:data_split, :])
train_data.setField('target', Y[0:data_split, :])

for i in range(data_split, num_of_examples):
    test_data.addSample(X[i, :], Y[i, :])

test_data.setField('input', X[data_split:num_of_examples, :])
test_data.setField('target', Y[data_split:num_of_examples, :])


if os.path.isfile('dig.xml'):
    net = NetworkReader.readFrom('dig.xml')
    net.sorted = False
    net.sortModules()
else:

    net = buildNetwork(size_of_example, size_of_example / 2, num_of_labels, bias=True, hiddenclass=SigmoidLayer,
                       outclass=SoftmaxLayer)
    net.sortModules()

test_index = randint(0, X.shape[0])
test_input = X[test_index, :]


real_train = train_data['target'].argmax(axis=1)
real_test = test_data['target'].argmax(axis=1)
from pybrain.datasets import UnsupervisedDataSet
import numpy as np
from pybrain.tools.xml import NetworkReader


print 'read dataset'

text_file = open('doc/recog.txt')
lines = text_file.read().split('\n')
text_file.close()

text_file = open('doc/labels.txt')
labels = text_file.read().split('\n')
text_file.close()

network = NetworkReader.readFrom('NN.xml')

for line in lines:

    if not line:
        continue
    line = line.split(' ')
    datas = line[:-1]
    x = []
    for data in datas:
        x.append(float(data))

    data_set = UnsupervisedDataSet(13)
    data_set.addSample(x)

    out = network.activateOnDataset(data_set)
Пример #18
0
import matplotlib.pyplot as plt
from numpy import *
from pybrain.tools.xml import NetworkReader
from scipy import io

# load data
data = io.loadmat('data_mnist.mat')  # load the data

X = data['X']
Y = data['y']  # split to x and y

c = random.randint(0, X.shape[0])  # get random index

c2 = X[c, :]  #  get the data stored at that index

#  show the in a graph
m, n = shape(X)
image = array(X[c, 0:n])
plt.imshow((image.reshape(20, 20)).T, cmap='Greys')
plt.show()

# read the saved network from the file
net = NetworkReader.readFrom('test_temp.xml')

# pass the test image through the neural net
prediction = net.activate(c2)
# get the value with the highest probability
p = argmax(prediction, axis=0)
print(prediction)
print("predicted output is \t" + str(p))
Пример #19
0
import os

from pybrain.tools.xml import NetworkReader

from game import play
from pybrain_examples.nn_pygame_bird.constants import NETWORKS_DIR

if __name__ == '__main__':
    filename = '2016_05_19/10_50.xml'
    net = NetworkReader.readFrom(os.path.join(NETWORKS_DIR, filename))
    play(net, False)
Пример #20
0
from pybrain.tools.xml import NetworkWriter,NetworkReader
j = 0
NPZ = 'data.npz'
XML = 'net.xml'
image_array = np.zeros((1, 9600))
label_array = np.zeros((1, 4), 'float')

#find NPZ file
if os.path.exists(NPZ) == False:
    print('NPZ file does not exist!')
    raw_input(">")
    sys.exit()

if os.path.exists(XML) == True:
    # load neural network
    network = NetworkReader.readFrom(XML)
else:
    # build new neural network
    network = buildNetwork(9600, 32, 32, 4, bias = True)
    

training_data = glob.glob(NPZ)
target = SupervisedDataSet(9600, 4)
trainer = BackpropTrainer(network, target)


# load NPZ file
for single_npz in training_data:
    with np.load(single_npz) as data:
        print data.files
        train_temp = data['train']
Пример #21
0
def load_net():
        from pybrain.tools.xml import NetworkReader
        open_filename = tkFileDialog.askopenfilename()
        global net
        net=NetworkReader.readFrom(open_filename)
Пример #22
0
import numpy

from scipy.io.wavfile import read
from scipy.io.wavfile import write
from python_speech_features import fbank, dct, lifter
from python_speech_features import delta
from pybrain.tools.xml import NetworkReader
import numpy as np
from scipy import signal
import GUI_Builder
from FundamentaFreq import freq_from_autocorr
net_noise = NetworkReader.readFrom('./model/net_noise.xml')


def resample(y, orig_sr, target_sr):

    if orig_sr == target_sr:
        return y
    ratio = float(target_sr) / orig_sr
    n_samples = int(np.ceil(y.shape[-1] * ratio))
    y_hat = signal.resample(y, n_samples, axis=-1)
    #if fix:
    #    y_hat = util.fix_length(y_hat, n_samples, **kwargs)
    return np.ascontiguousarray(y_hat, dtype=y.dtype)


def reduce_noise(filename):
    namefile = filename.replace(".wav", "")
    lowpass = 21  # Remove lower frequencies.
    highpass = 9000  # Remove higher frequencies.
    (Frequency, array) = read(filename)
Пример #23
0
import matplotlib.pyplot as plt
from numpy import *
from pybrain.tools.xml import NetworkReader
from scipy import io

# load data
data = io.loadmat('data_mnist.mat')  # load the data

X = data['X']  # store the parts of the data labeled X so that we can get its size and shape

c = random.randint(0, X.shape[0])  # get random index

c2 = X[c, :]  # get the data stored at that index

#  show the digit in a graph
m, n = shape(X)
image = array(X[c, 0:n])
plt.imshow((image.reshape(20, 20)).T, cmap='Greys')
plt.show()

# read the saved network from the file
net = NetworkReader.readFrom('good_net.xml')

# pass the test image through the neural net
prediction = net.activate(c2)
# get the value with the highest probability
p = argmax(prediction, axis=0)
print(prediction)
print("The digit should be : \t" + str(p))
Пример #24
0
train_data._convertToOneOfMany()
test_data._convertToOneOfMany()
data_split = int(num_of_examples * 0.7)

# setting the field names
train_data.setField('input', X[0:data_split, :])
train_data.setField('target', Y[0:data_split, :])

for i in range(data_split, num_of_examples):
    test_data.addSample(X[i, :], Y[i, :])

test_data.setField('input', X[data_split:num_of_examples, :])
test_data.setField('target', Y[data_split:num_of_examples, :])

if os.path.isfile('dig.xml') and os.path.isfile('digHB.xml'):
    net = NetworkReader.readFrom('dig.xml')
    netHB = NetworkReader.readFrom('digHB.xml')

else:
    net = buildNetwork(size_of_example,
                       size_of_example / 2,
                       num_of_labels,
                       bias=True,
                       hiddenclass=SigmoidLayer,
                       outclass=SoftmaxLayer)
    netHB = buildNetwork(size_of_example,
                         size_of_example / 2,
                         num_of_labels,
                         bias=True,
                         hiddenclass=TanhLayer,
                         outclass=SoftmaxLayer)