Пример #1
0
from pybullet_utils_local.logger import Logger

logger = Logger()
logger.configure_output_file("e:/mylog.txt")
for i in range(10):
    logger.log_tabular("Iteration", 1)
Logger.print2("hello world")

logger.print_tabular()
logger.dump_tabular()
Пример #2
0
class RLAgent(ABC):
    class Mode(Enum):
        TRAIN = 0
        TEST = 1
        TRAIN_END = 2

    NAME = "None"

    UPDATE_PERIOD_KEY = "UpdatePeriod"
    ITERS_PER_UPDATE = "ItersPerUpdate"
    DISCOUNT_KEY = "Discount"
    MINI_BATCH_SIZE_KEY = "MiniBatchSize"
    REPLAY_BUFFER_SIZE_KEY = "ReplayBufferSize"
    INIT_SAMPLES_KEY = "InitSamples"
    NORMALIZER_SAMPLES_KEY = "NormalizerSamples"

    OUTPUT_ITERS_KEY = "OutputIters"
    INT_OUTPUT_ITERS_KEY = "IntOutputIters"
    TEST_EPISODES_KEY = "TestEpisodes"

    EXP_ANNEAL_SAMPLES_KEY = "ExpAnnealSamples"
    EXP_PARAM_BEG_KEY = "ExpParamsBeg"
    EXP_PARAM_END_KEY = "ExpParamsEnd"

    def __init__(self, world, id, json_data):
        self.world = world
        self.id = id
        self.logger = Logger()
        self._mode = self.Mode.TRAIN

        assert self._check_action_space(), \
            Logger.print2("Invalid action space, got {:s}".format(str(self.get_action_space())))

        self._enable_training = True
        self.path = Path()
        self.iter = int(0)
        self.start_time = time.time()
        self._update_counter = 0

        self.update_period = 1.0  # simulated time (seconds) before each training update
        self.iters_per_update = int(1)
        self.discount = 0.95
        self.mini_batch_size = int(32)
        self.replay_buffer_size = int(50000)
        self.init_samples = int(1000)
        self.normalizer_samples = np.inf
        self._local_mini_batch_size = self.mini_batch_size  # batch size for each work for multiprocessing
        self._need_normalizer_update = True
        self._total_sample_count = 0

        self._output_dir = ""
        self._int_output_dir = ""
        self.output_iters = 100
        self.int_output_iters = 100

        self.train_return = 0.0
        self.test_episodes = int(0)
        self.test_episode_count = int(0)
        self.test_return = 0.0
        self.avg_test_return = 0.0

        self.exp_anneal_samples = 320000
        self.exp_params_beg = ExpParams()
        self.exp_params_end = ExpParams()
        self.exp_params_curr = ExpParams()

        self._load_params(json_data)
        self._build_replay_buffer(self.replay_buffer_size)
        self._build_normalizers()
        self._build_bounds()
        self.reset()

        return

    def __str__(self):
        action_space_str = str(self.get_action_space())
        info_str = ""
        info_str += '"ID": {:d},\n "Type": "{:s}",\n "ActionSpace": "{:s}",\n "StateDim": {:d},\n "GoalDim": {:d},\n "ActionDim": {:d}'.format(
            self.id, self.NAME,
            action_space_str[action_space_str.rfind('.') + 1:],
            self.get_state_size(), self.get_goal_size(),
            self.get_action_size())
        return "{\n" + info_str + "\n}"

    def get_output_dir(self):
        return self._output_dir

    def set_output_dir(self, out_dir):
        self._output_dir = out_dir
        if (self._output_dir != ""):
            self.logger.configure_output_file(out_dir + "/agent" +
                                              str(self.id) + "_log.txt")
        return

    output_dir = property(get_output_dir, set_output_dir)

    def get_int_output_dir(self):
        return self._int_output_dir

    def set_int_output_dir(self, out_dir):
        self._int_output_dir = out_dir
        return

    int_output_dir = property(get_int_output_dir, set_int_output_dir)

    def reset(self):
        self.path.clear()
        return

    def update(self, timestep):
        if self.need_new_action():
            #print("update_new_action!!!")
            self._update_new_action()

        if (self._mode == self.Mode.TRAIN and self.enable_training):
            self._update_counter += timestep

            while self._update_counter >= self.update_period:
                self._train()
                self._update_exp_params()
                self.world.env.set_sample_count(self._total_sample_count)
                self._update_counter -= self.update_period

        return

    def end_episode(self):
        if (self.path.pathlength() > 0):
            self._end_path()

            if (self._mode == self.Mode.TRAIN
                    or self._mode == self.Mode.TRAIN_END):
                if (self.enable_training and self.path.pathlength() > 0):
                    self._store_path(self.path)
            elif (self._mode == self.Mode.TEST):
                self._update_test_return(self.path)
            else:
                assert False, Logger.print2("Unsupported RL agent mode" +
                                            str(self._mode))

            self._update_mode()
        return

    def has_goal(self):
        return self.get_goal_size() > 0

    def predict_val(self):
        return 0

    def get_enable_training(self):
        return self._enable_training

    def set_enable_training(self, enable):
        print("set_enable_training=", enable)
        self._enable_training = enable
        if (self._enable_training):
            self.reset()
        return

    enable_training = property(get_enable_training, set_enable_training)

    def enable_testing(self):
        return self.test_episodes > 0

    def get_name(self):
        return self.NAME

    @abstractmethod
    def save_model(self, out_path):
        pass

    @abstractmethod
    def load_model(self, in_path):
        pass

    @abstractmethod
    def _decide_action(self, s, g):
        pass

    @abstractmethod
    def _get_output_path(self):
        pass

    @abstractmethod
    def _get_int_output_path(self):
        pass

    @abstractmethod
    def _train_step(self):
        pass

    @abstractmethod
    def _check_action_space(self):
        pass

    def get_action_space(self):
        return self.world.env.get_action_space(self.id)

    def get_state_size(self):
        return self.world.env.get_state_size(self.id)

    def get_goal_size(self):
        return self.world.env.get_goal_size(self.id)

    def get_action_size(self):
        return self.world.env.get_action_size(self.id)

    def get_num_actions(self):
        return self.world.env.get_num_actions(self.id)

    def need_new_action(self):
        return self.world.env.need_new_action(self.id)

    def _build_normalizers(self):
        self.s_norm = Normalizer(
            self.get_state_size(),
            self.world.env.build_state_norm_groups(self.id))
        self.s_norm.set_mean_std(-self.world.env.build_state_offset(self.id),
                                 1 / self.world.env.build_state_scale(self.id))

        self.g_norm = Normalizer(
            self.get_goal_size(),
            self.world.env.build_goal_norm_groups(self.id))
        self.g_norm.set_mean_std(-self.world.env.build_goal_offset(self.id),
                                 1 / self.world.env.build_goal_scale(self.id))

        self.a_norm = Normalizer(self.world.env.get_action_size())
        self.a_norm.set_mean_std(
            -self.world.env.build_action_offset(self.id),
            1 / self.world.env.build_action_scale(self.id))
        return

    def _build_bounds(self):
        self.a_bound_min = self.world.env.build_action_bound_min(self.id)
        self.a_bound_max = self.world.env.build_action_bound_max(self.id)
        return

    def _load_params(self, json_data):
        if (self.UPDATE_PERIOD_KEY in json_data):
            self.update_period = int(json_data[self.UPDATE_PERIOD_KEY])

        if (self.ITERS_PER_UPDATE in json_data):
            self.iters_per_update = int(json_data[self.ITERS_PER_UPDATE])

        if (self.DISCOUNT_KEY in json_data):
            self.discount = json_data[self.DISCOUNT_KEY]

        if (self.MINI_BATCH_SIZE_KEY in json_data):
            self.mini_batch_size = int(json_data[self.MINI_BATCH_SIZE_KEY])

        if (self.REPLAY_BUFFER_SIZE_KEY in json_data):
            self.replay_buffer_size = int(
                json_data[self.REPLAY_BUFFER_SIZE_KEY])

        if (self.INIT_SAMPLES_KEY in json_data):
            self.init_samples = int(json_data[self.INIT_SAMPLES_KEY])

        if (self.NORMALIZER_SAMPLES_KEY in json_data):
            self.normalizer_samples = int(
                json_data[self.NORMALIZER_SAMPLES_KEY])

        if (self.OUTPUT_ITERS_KEY in json_data):
            self.output_iters = json_data[self.OUTPUT_ITERS_KEY]

        if (self.INT_OUTPUT_ITERS_KEY in json_data):
            self.int_output_iters = json_data[self.INT_OUTPUT_ITERS_KEY]

        if (self.TEST_EPISODES_KEY in json_data):
            self.test_episodes = int(json_data[self.TEST_EPISODES_KEY])

        if (self.EXP_ANNEAL_SAMPLES_KEY in json_data):
            self.exp_anneal_samples = json_data[self.EXP_ANNEAL_SAMPLES_KEY]

        if (self.EXP_PARAM_BEG_KEY in json_data):
            self.exp_params_beg.load(json_data[self.EXP_PARAM_BEG_KEY])

        if (self.EXP_PARAM_END_KEY in json_data):
            self.exp_params_end.load(json_data[self.EXP_PARAM_END_KEY])

        num_procs = MPIUtil.get_num_procs()
        self._local_mini_batch_size = int(
            np.ceil(self.mini_batch_size / num_procs))
        self._local_mini_batch_size = np.maximum(self._local_mini_batch_size,
                                                 1)
        self.mini_batch_size = self._local_mini_batch_size * num_procs

        assert (self.exp_params_beg.noise == self.exp_params_end.noise
                )  # noise std should not change
        self.exp_params_curr = copy.deepcopy(self.exp_params_beg)
        self.exp_params_end.noise = self.exp_params_beg.noise

        self._need_normalizer_update = self.normalizer_samples > 0

        return

    def _record_state(self):
        s = self.world.env.record_state(self.id)
        return s

    def _record_goal(self):
        g = self.world.env.record_goal(self.id)
        return g

    def _record_reward(self):
        r = self.world.env.calc_reward(self.id)
        return r

    def _apply_action(self, a):
        self.world.env.set_action(self.id, a)
        return

    def _record_flags(self):
        return int(0)

    def _is_first_step(self):
        return len(self.path.states) == 0

    def _end_path(self):
        s = self._record_state()
        g = self._record_goal()
        r = self._record_reward()

        self.path.rewards.append(r)
        self.path.states.append(s)
        self.path.goals.append(g)
        self.path.terminate = self.world.env.check_terminate(self.id)

        return

    def _update_new_action(self):
        #print("_update_new_action!")
        s = self._record_state()
        #np.savetxt("pb_record_state_s.csv", s, delimiter=",")
        g = self._record_goal()

        if not (self._is_first_step()):
            r = self._record_reward()
            self.path.rewards.append(r)

        a, logp = self._decide_action(s=s, g=g)
        assert len(np.shape(a)) == 1
        assert len(np.shape(logp)) <= 1

        flags = self._record_flags()
        self._apply_action(a)

        self.path.states.append(s)
        self.path.goals.append(g)
        self.path.actions.append(a)
        self.path.logps.append(logp)
        self.path.flags.append(flags)

        if self._enable_draw():
            self._log_val(s, g)

        return

    def _update_exp_params(self):
        lerp = float(self._total_sample_count) / self.exp_anneal_samples
        lerp = np.clip(lerp, 0.0, 1.0)
        self.exp_params_curr = self.exp_params_beg.lerp(
            self.exp_params_end, lerp)
        return

    def _update_test_return(self, path):
        path_reward = path.calc_return()
        self.test_return += path_reward
        self.test_episode_count += 1
        return

    def _update_mode(self):
        if (self._mode == self.Mode.TRAIN):
            self._update_mode_train()
        elif (self._mode == self.Mode.TRAIN_END):
            self._update_mode_train_end()
        elif (self._mode == self.Mode.TEST):
            self._update_mode_test()
        else:
            assert False, Logger.print2("Unsupported RL agent mode" +
                                        str(self._mode))
        return

    def _update_mode_train(self):
        return

    def _update_mode_train_end(self):
        self._init_mode_test()
        return

    def _update_mode_test(self):
        if (self.test_episode_count * MPIUtil.get_num_procs() >=
                self.test_episodes):
            global_return = MPIUtil.reduce_sum(self.test_return)
            global_count = MPIUtil.reduce_sum(self.test_episode_count)
            avg_return = global_return / global_count
            self.avg_test_return = avg_return

            if self.enable_training:
                self._init_mode_train()
        return

    def _init_mode_train(self):
        self._mode = self.Mode.TRAIN
        self.world.env.set_mode(self._mode)
        return

    def _init_mode_train_end(self):
        self._mode = self.Mode.TRAIN_END
        return

    def _init_mode_test(self):
        self._mode = self.Mode.TEST
        self.test_return = 0.0
        self.test_episode_count = 0
        self.world.env.set_mode(self._mode)
        return

    def _enable_output(self):
        return MPIUtil.is_root_proc() and self.output_dir != ""

    def _enable_int_output(self):
        return MPIUtil.is_root_proc() and self.int_output_dir != ""

    def _calc_val_bounds(self, discount):
        r_min = self.world.env.get_reward_min(self.id)
        r_max = self.world.env.get_reward_max(self.id)
        assert (r_min <= r_max)

        val_min = r_min / (1.0 - discount)
        val_max = r_max / (1.0 - discount)
        return val_min, val_max

    def _calc_val_offset_scale(self, discount):
        val_min, val_max = self._calc_val_bounds(discount)
        val_offset = 0
        val_scale = 1

        if (np.isfinite(val_min) and np.isfinite(val_max)):
            val_offset = -0.5 * (val_max + val_min)
            val_scale = 2 / (val_max - val_min)

        return val_offset, val_scale

    def _calc_term_vals(self, discount):
        r_fail = self.world.env.get_reward_fail(self.id)
        r_succ = self.world.env.get_reward_succ(self.id)

        r_min = self.world.env.get_reward_min(self.id)
        r_max = self.world.env.get_reward_max(self.id)
        assert (r_fail <= r_max and r_fail >= r_min)
        assert (r_succ <= r_max and r_succ >= r_min)
        assert (not np.isinf(r_fail))
        assert (not np.isinf(r_succ))

        if (discount == 0):
            val_fail = 0
            val_succ = 0
        else:
            val_fail = r_fail / (1.0 - discount)
            val_succ = r_succ / (1.0 - discount)

        return val_fail, val_succ

    def _update_iter(self, iter):
        if (self._enable_output() and self.iter % self.output_iters == 0):
            output_path = self._get_output_path()
            output_dir = os.path.dirname(output_path)
            if not os.path.exists(output_dir):
                os.makedirs(output_dir)
            self.save_model(output_path)

        if (self._enable_int_output()
                and self.iter % self.int_output_iters == 0):
            int_output_path = self._get_int_output_path()
            int_output_dir = os.path.dirname(int_output_path)
            if not os.path.exists(int_output_dir):
                os.makedirs(int_output_dir)
            self.save_model(int_output_path)

        self.iter = iter
        return

    def _enable_draw(self):
        return self.world.env.enable_draw

    def _log_val(self, s, g):
        pass

    def _build_replay_buffer(self, buffer_size):
        num_procs = MPIUtil.get_num_procs()
        buffer_size = int(buffer_size / num_procs)
        self.replay_buffer = ReplayBuffer(buffer_size=buffer_size)
        self.replay_buffer_initialized = False
        return

    def _store_path(self, path):
        path_id = self.replay_buffer.store(path)
        valid_path = path_id != MathUtil.INVALID_IDX

        if valid_path:
            self.train_return = path.calc_return()

            if self._need_normalizer_update:
                self._record_normalizers(path)

        return path_id

    def _record_normalizers(self, path):
        states = np.array(path.states)
        self.s_norm.record(states)

        if self.has_goal():
            goals = np.array(path.goals)
            self.g_norm.record(goals)

        return

    def _update_normalizers(self):
        self.s_norm.update()

        if self.has_goal():
            self.g_norm.update()
        return

    def _train(self):
        samples = self.replay_buffer.total_count
        self._total_sample_count = int(MPIUtil.reduce_sum(samples))
        end_training = False

        if (self.replay_buffer_initialized):
            if (self._valid_train_step()):
                prev_iter = self.iter
                iters = self._get_iters_per_update()
                avg_train_return = MPIUtil.reduce_avg(self.train_return)

                for i in range(iters):
                    curr_iter = self.iter
                    wall_time = time.time() - self.start_time
                    wall_time /= 60 * 60  # store time in hours

                    has_goal = self.has_goal()
                    s_mean = np.mean(self.s_norm.mean)
                    s_std = np.mean(self.s_norm.std)
                    g_mean = np.mean(self.g_norm.mean) if has_goal else 0
                    g_std = np.mean(self.g_norm.std) if has_goal else 0

                    self.logger.log_tabular("Iteration", self.iter)
                    self.logger.log_tabular("Wall_Time", wall_time)
                    self.logger.log_tabular("Samples",
                                            self._total_sample_count)
                    self.logger.log_tabular("Train_Return", avg_train_return)
                    self.logger.log_tabular("Test_Return",
                                            self.avg_test_return)
                    self.logger.log_tabular("State_Mean", s_mean)
                    self.logger.log_tabular("State_Std", s_std)
                    self.logger.log_tabular("Goal_Mean", g_mean)
                    self.logger.log_tabular("Goal_Std", g_std)
                    self._log_exp_params()

                    self._update_iter(self.iter + 1)
                    self._train_step()

                    Logger.print2("Agent " + str(self.id))
                    self.logger.print_tabular()
                    Logger.print2("")

                    if (self._enable_output()
                            and curr_iter % self.int_output_iters == 0):
                        self.logger.dump_tabular()

                if (prev_iter // self.int_output_iters !=
                        self.iter // self.int_output_iters):
                    end_training = self.enable_testing()

        else:

            Logger.print2("Agent " + str(self.id))
            Logger.print2("Samples: " + str(self._total_sample_count))
            Logger.print2("")

            if (self._total_sample_count >= self.init_samples):
                self.replay_buffer_initialized = True
                end_training = self.enable_testing()

        if self._need_normalizer_update:
            self._update_normalizers()
            self._need_normalizer_update = self.normalizer_samples > self._total_sample_count

        if end_training:
            self._init_mode_train_end()

        return

    def _get_iters_per_update(self):
        return MPIUtil.get_num_procs() * self.iters_per_update

    def _valid_train_step(self):
        return True

    def _log_exp_params(self):
        self.logger.log_tabular("Exp_Rate", self.exp_params_curr.rate)
        self.logger.log_tabular("Exp_Noise", self.exp_params_curr.noise)
        self.logger.log_tabular("Exp_Temp", self.exp_params_curr.temp)
        return