Пример #1
0
def equilibrium_(phase_records: Dict[str, PhaseRecord],
                 conditions: Dict[v.StateVariable, np.ndarray], grid: LightDataset
                 ) -> LightDataset:
    """
    Perform a fast equilibrium calculation with virtually no overhead.
    """
    statevars = sorted(get_state_variables(conds=conditions), key=str)
    conditions = _adjust_conditions(conditions)
    str_conds = OrderedDict([(str(ky), conditions[ky]) for ky in sorted(conditions.keys(), key=str)])
    start_point = starting_point(conditions, statevars, phase_records, grid)
    return _solve_eq_at_conditions(start_point, phase_records, grid, str_conds, statevars, False)
Пример #2
0
def no_op_equilibrium_(phase_records: Dict[str, PhaseRecord],
                       conditions: Dict[v.StateVariable, np.ndarray],
                       grid: LightDataset,
                       ) -> LightDataset:
    """
    Perform a fast "equilibrium" calculation with virtually no overhead that
    doesn't refine the solution or do global minimization, but just returns
    the starting point.

    Notes
    -----
    Uses a placeholder first argument for the same signature as
    ``_equilibrium``, but ``species`` are not needed.

    """
    statevars = get_state_variables(conds=conditions)
    conditions = _adjust_conditions(conditions)
    return starting_point(conditions, statevars, phase_records, grid)
Пример #3
0
def map_binary(
    dbf,
    comps,
    phases,
    conds,
    eq_kwargs=None,
    calc_kwargs=None,
    boundary_sets=None,
    verbose=False,
    summary=False,
):
    """
    Map a binary T-X phase diagram

    Parameters
    ----------
    dbf : Database
    comps : list of str
    phases : list of str
        List of phases to consider in mapping
    conds : dict
        Dictionary of conditions
    eq_kwargs : dict
        Dictionary of keyword arguments to pass to equilibrium
    verbose : bool
        Print verbose output for mapping
    boundary_sets : ZPFBoundarySets
        Existing ZPFBoundarySets

    Returns
    -------
    ZPFBoundarySets

    Notes
    -----
    Assumes conditions in T and X.

    Simple algorithm to map a binary phase diagram in T-X. More or less follows
    the algorithm described in Figure 2 by Snider et al. [1] with the small
    algorithmic improvement of constructing a convex hull to find the next
    potential two phase region.

    For each temperature, proceed along increasing composition, skipping two
    over two phase regions, once calculated.
    [1] J. Snider, I. Griva, X. Sun, M. Emelianenko, Set based framework for
        Gibbs energy minimization, Calphad. 48 (2015) 18-26.
        doi: 10.1016/j.calphad.2014.09.005

    """

    eq_kwargs = eq_kwargs or {}
    calc_kwargs = calc_kwargs or {}
    # implicitly add v.N to conditions
    if v.N not in conds:
        conds[v.N] = [1.0]
    if 'pdens' not in calc_kwargs:
        calc_kwargs['pdens'] = 2000

    species = unpack_components(dbf, comps)
    phases = filter_phases(dbf, species, phases)
    parameters = eq_kwargs.get('parameters', {})
    models = eq_kwargs.get('model')
    statevars = get_state_variables(models=models, conds=conds)
    if models is None:
        models = instantiate_models(dbf,
                                    comps,
                                    phases,
                                    model=eq_kwargs.get('model'),
                                    parameters=parameters,
                                    symbols_only=True)
    prxs = build_phase_records(dbf,
                               species,
                               phases,
                               conds,
                               models,
                               output='GM',
                               parameters=parameters,
                               build_gradients=True,
                               build_hessians=True)

    indep_comp = [
        key for key, value in conds.items()
        if isinstance(key, v.MoleFraction) and len(np.atleast_1d(value)) > 1
    ]
    indep_pot = [
        key for key, value in conds.items()
        if (type(key) is v.StateVariable) and len(np.atleast_1d(value)) > 1
    ]
    if (len(indep_comp) != 1) or (len(indep_pot) != 1):
        raise ValueError(
            'Binary map requires exactly one composition and one potential coordinate'
        )
    if indep_pot[0] != v.T:
        raise ValueError(
            'Binary map requires that a temperature grid must be defined')

    # binary assumption, only one composition specified.
    comp_cond = [k for k in conds.keys() if isinstance(k, v.X)][0]
    indep_comp = comp_cond.name[2:]
    indep_comp_idx = sorted(get_pure_elements(dbf, comps)).index(indep_comp)
    composition_grid = unpack_condition(conds[comp_cond])
    dX = composition_grid[1] - composition_grid[0]
    Xmax = composition_grid.max()
    temperature_grid = unpack_condition(conds[v.T])
    dT = temperature_grid[1] - temperature_grid[0]

    boundary_sets = boundary_sets or ZPFBoundarySets(comps, comp_cond)

    equilibria_calculated = 0
    equilibrium_time = 0
    convex_hulls_calculated = 0
    convex_hull_time = 0
    curr_conds = {key: unpack_condition(val) for key, val in conds.items()}
    str_conds = sorted([str(k) for k in curr_conds.keys()])
    grid_conds = _adjust_conditions(curr_conds)
    for T_idx in range(temperature_grid.size):
        T = temperature_grid[T_idx]
        iter_equilibria = 0
        if verbose:
            print("=== T = {} ===".format(float(T)))
        curr_conds[v.T] = [float(T)]
        eq_conds = deepcopy(curr_conds)
        Xmax_visited = 0.0
        hull_time = time.time()
        grid = calculate(dbf,
                         comps,
                         phases,
                         fake_points=True,
                         output='GM',
                         T=T,
                         P=grid_conds[v.P],
                         N=1,
                         model=models,
                         parameters=parameters,
                         to_xarray=False,
                         **calc_kwargs)
        hull = starting_point(eq_conds, statevars, prxs, grid)
        convex_hull_time += time.time() - hull_time
        convex_hulls_calculated += 1
        while Xmax_visited < Xmax:
            hull_compsets = find_two_phase_region_compsets(
                hull,
                T,
                indep_comp,
                indep_comp_idx,
                minimum_composition=Xmax_visited,
                misc_gap_tol=2 * dX)
            if hull_compsets is None:
                if verbose:
                    print(
                        "== Convex hull: max visited = {} - no multiphase phase compsets found =="
                        .format(Xmax_visited, hull_compsets))
                break
            Xeq = hull_compsets.mean_composition
            eq_conds[comp_cond] = [float(Xeq)]
            eq_time = time.time()
            start_point = starting_point(eq_conds, statevars, prxs, grid)
            eq_ds = _solve_eq_at_conditions(species, start_point, prxs, grid,
                                            str_conds, statevars, False)
            equilibrium_time += time.time() - eq_time
            equilibria_calculated += 1
            iter_equilibria += 1
            # composition sets in the plane of the calculation:
            # even for isopleths, this should always be two.
            compsets = get_compsets(eq_ds, indep_comp, indep_comp_idx)
            if verbose:
                print(
                    "== Convex hull: max visited = {:0.4f} - hull compsets: {} equilibrium compsets: {} =="
                    .format(Xmax_visited, hull_compsets, compsets))
            if compsets is None:
                # equilibrium calculation, didn't find a valid multiphase composition set
                # we need to find the next feasible one from the convex hull.
                Xmax_visited += dX
                continue
            else:
                boundary_sets.add_compsets(compsets, Xtol=0.10, Ttol=2 * dT)
                if compsets.max_composition > Xmax_visited:
                    Xmax_visited = compsets.max_composition
            # this seems kind of sloppy, but captures the effect that we want to
            # keep doing equilibrium calculations, if possible.
            while Xmax_visited < Xmax and compsets is not None:
                eq_conds[comp_cond] = [float(Xmax_visited + dX)]
                eq_time = time.time()
                # TODO: starting point could be improved by basing it off the previous calculation
                start_point = starting_point(eq_conds, statevars, prxs, grid)
                eq_ds = _solve_eq_at_conditions(species, start_point, prxs,
                                                grid, str_conds, statevars,
                                                False)
                equilibrium_time += time.time() - eq_time
                equilibria_calculated += 1
                compsets = get_compsets(eq_ds, indep_comp, indep_comp_idx)
                if compsets is not None:
                    Xmax_visited = compsets.max_composition
                    boundary_sets.add_compsets(compsets,
                                               Xtol=0.10,
                                               Ttol=2 * dT)
                else:
                    Xmax_visited += dX
                if verbose:
                    print("Equilibrium: at X = {:0.4f}, found compsets {}".
                          format(Xmax_visited, compsets))
        if verbose:
            print(iter_equilibria, 'equilibria calculated in this iteration.')
    if verbose or summary:
        print("{} Convex hulls calculated ({:0.1f}s)".format(
            convex_hulls_calculated, convex_hull_time))
        print("{} Equilbria calculated ({:0.1f}s)".format(
            equilibria_calculated, equilibrium_time))
        print("{:0.0f}% of brute force calculations skipped".format(
            100 * (1 - equilibria_calculated /
                   (composition_grid.size * temperature_grid.size))))
    return boundary_sets
Пример #4
0
def equilibrium(dbf,
                comps,
                phases,
                conditions,
                output=None,
                model=None,
                verbose=False,
                broadcast=True,
                calc_opts=None,
                to_xarray=True,
                scheduler='sync',
                parameters=None,
                solver=None,
                callables=None,
                **kwargs):
    """
    Calculate the equilibrium state of a system containing the specified
    components and phases, under the specified conditions.

    Parameters
    ----------
    dbf : Database
        Thermodynamic database containing the relevant parameters.
    comps : list
        Names of components to consider in the calculation.
    phases : list or dict
        Names of phases to consider in the calculation.
    conditions : dict or (list of dict)
        StateVariables and their corresponding value.
    output : str or list of str, optional
        Additional equilibrium model properties (e.g., CPM, HM, etc.) to compute.
        These must be defined as attributes in the Model class of each phase.
    model : Model, a dict of phase names to Model, or a seq of both, optional
        Model class to use for each phase.
    verbose : bool, optional
        Print details of calculations. Useful for debugging.
    broadcast : bool
        If True, broadcast conditions against each other. This will compute all combinations.
        If False, each condition should be an equal-length list (or single-valued).
        Disabling broadcasting is useful for calculating equilibrium at selected conditions,
        when those conditions don't comprise a grid.
    calc_opts : dict, optional
        Keyword arguments to pass to `calculate`, the energy/property calculation routine.
    to_xarray : bool
        Whether to return an xarray Dataset (True, default) or an EquilibriumResult.
    scheduler : Dask scheduler, optional
        Job scheduler for performing the computation.
        If None, return a Dask graph of the computation instead of actually doing it.
    parameters : dict, optional
        Maps SymPy Symbol to numbers, for overriding the values of parameters in the Database.
    solver : pycalphad.core.solver.SolverBase
        Instance of a solver that is used to calculate local equilibria.
        Defaults to a pycalphad.core.solver.InteriorPointSolver.
    callables : dict, optional
        Pre-computed callable functions for equilibrium calculation.

    Returns
    -------
    Structured equilibrium calculation, or Dask graph if scheduler=None.

    Examples
    --------
    None yet.
    """
    if not broadcast:
        raise NotImplementedError('Broadcasting cannot yet be disabled')
    comps = sorted(unpack_components(dbf, comps))
    phases = unpack_phases(phases) or sorted(dbf.phases.keys())
    list_of_possible_phases = filter_phases(dbf, comps)
    if len(list_of_possible_phases) == 0:
        raise ConditionError(
            'There are no phases in the Database that can be active with components {0}'
            .format(comps))
    active_phases = {
        name: dbf.phases[name]
        for name in filter_phases(dbf, comps, phases)
    }
    if len(active_phases) == 0:
        raise ConditionError(
            'None of the passed phases ({0}) are active. List of possible phases: {1}.'
            .format(phases, list_of_possible_phases))
    if isinstance(comps, (str, v.Species)):
        comps = [comps]
    if len(set(comps) - set(dbf.species)) > 0:
        raise EquilibriumError('Components not found in database: {}'.format(
            ','.join([c.name for c in (set(comps) - set(dbf.species))])))
    calc_opts = calc_opts if calc_opts is not None else dict()
    solver = solver if solver is not None else InteriorPointSolver(
        verbose=verbose)
    parameters = parameters if parameters is not None else dict()
    if isinstance(parameters, dict):
        parameters = OrderedDict(sorted(parameters.items(), key=str))
    models = instantiate_models(dbf,
                                comps,
                                active_phases,
                                model=model,
                                parameters=parameters)
    # Temporary solution until constraint system improves
    if conditions.get(v.N) is None:
        conditions[v.N] = 1
    if np.any(np.array(conditions[v.N]) != 1):
        raise ConditionError('N!=1 is not yet supported, got N={}'.format(
            conditions[v.N]))
    # Modify conditions values to be within numerical limits, e.g., X(AL)=0
    # Also wrap single-valued conditions with lists
    conds = _adjust_conditions(conditions)

    for cond in conds.keys():
        if isinstance(cond,
                      (v.Composition,
                       v.ChemicalPotential)) and cond.species not in comps:
            raise ConditionError(
                '{} refers to non-existent component'.format(cond))
    state_variables = sorted(get_state_variables(models=models, conds=conds),
                             key=str)
    str_conds = OrderedDict((str(key), value) for key, value in conds.items())
    components = [x for x in sorted(comps)]
    desired_active_pure_elements = [
        list(x.constituents.keys()) for x in components
    ]
    desired_active_pure_elements = [
        el.upper() for constituents in desired_active_pure_elements
        for el in constituents
    ]
    pure_elements = sorted(
        set([x for x in desired_active_pure_elements if x != 'VA']))
    if verbose:
        print('Components:', ' '.join([str(x) for x in comps]))
        print('Phases:', end=' ')
    output = output if output is not None else 'GM'
    output = output if isinstance(output, (list, tuple, set)) else [output]
    output = set(output)
    output |= {'GM'}
    output = sorted(output)
    phase_records = build_phase_records(dbf,
                                        comps,
                                        active_phases,
                                        conds,
                                        models,
                                        output='GM',
                                        callables=callables,
                                        parameters=parameters,
                                        verbose=verbose,
                                        build_gradients=True,
                                        build_hessians=True)
    if verbose:
        print('[done]', end='\n')

    # 'calculate' accepts conditions through its keyword arguments
    grid_opts = calc_opts.copy()
    statevar_strings = [str(x) for x in state_variables]
    grid_opts.update({
        key: value
        for key, value in str_conds.items() if key in statevar_strings
    })
    if 'pdens' not in grid_opts:
        grid_opts['pdens'] = 500
    grid = calculate(dbf,
                     comps,
                     active_phases,
                     model=models,
                     fake_points=True,
                     callables=callables,
                     output='GM',
                     parameters=parameters,
                     to_xarray=False,
                     **grid_opts)
    coord_dict = str_conds.copy()
    coord_dict['vertex'] = np.arange(
        len(pure_elements) + 1
    )  # +1 is to accommodate the degenerate degree of freedom at the invariant reactions
    coord_dict['component'] = pure_elements
    properties = starting_point(conds, state_variables, phase_records, grid)
    properties = _solve_eq_at_conditions(comps,
                                         properties,
                                         phase_records,
                                         grid,
                                         list(str_conds.keys()),
                                         state_variables,
                                         verbose,
                                         solver=solver)

    # Compute equilibrium values of any additional user-specified properties
    # We already computed these properties so don't recompute them
    output = sorted(set(output) - {'GM', 'MU'})
    for out in output:
        if (out is None) or (len(out) == 0):
            continue
        # TODO: How do we know if a specified property should be per_phase or not?
        # For now, we make a best guess
        if (out == 'degree_of_ordering') or (out == 'DOO'):
            per_phase = True
        else:
            per_phase = False
        eqcal = _eqcalculate(dbf,
                             comps,
                             active_phases,
                             conditions,
                             out,
                             data=properties,
                             per_phase=per_phase,
                             model=models,
                             callables=callables,
                             parameters=parameters,
                             **calc_opts)
        properties = properties.merge(eqcal, inplace=True, compat='equals')
    if to_xarray:
        properties = properties.get_dataset()
    properties.attrs['created'] = datetime.utcnow().isoformat()
    if len(kwargs) > 0:
        warnings.warn(
            'The following equilibrium keyword arguments were passed, but unused:\n{}'
            .format(kwargs))
    return properties