Пример #1
0
def test_point_mutation(monkeypatch):
    """ Test for simple point mutation """
    def mock_values_generator():
        for v in [0, 1, 1, 1]:
            yield v

    values_generator = mock_values_generator()

    def mock_values():
        return next(values_generator)

    monkeypatch.setattr('pycgp.mutation.choice', lambda x: mock_values())

    genes = [2, 0, 1, 2, 1, 1, 2, 2, 2, 3]
    bounds = [2, 1, 1, 2, 2, 2, 2, 3, 3, 4]

    individual = Individual(genes, bounds, Params(2, 1))

    mutated_individual, _ = point_mutation(individual)

    assert mutated_individual.genes == [1, 0, 1, 2, 1, 1, 2, 2, 2, 3]
    assert mutated_individual.function_nodes[0].function_index == 1

    mutated_individual, _ = point_mutation(individual)

    assert mutated_individual.genes == [2, 1, 1, 2, 1, 1, 2, 2, 2, 3]
    assert not mutated_individual.function_nodes[0].active
    assert mutated_individual.function_nodes[1].active
    assert not mutated_individual.function_nodes[2].active
Пример #2
0
def mo_individual():
    """as multi-output individual"""
    mo_bounds = bounds[:]
    mo_bounds.append(6)
    mo_genes = [1, 0, 0, 1, 1, 1, 0, 4, 2, 2, 3, 1, 6, 3]

    return Individual(mo_genes, mo_bounds, Params(3, 2, funset=funset))
Пример #3
0
def single_mutation(individual, _=None):
    """ perform a 'single' mutation - mutate until active gene is changed """

    active_changed = False
    genes = individual.genes[:]
    bounds = individual.bounds
    agenes = individual.active_genes
    changed_indices = []

    while not active_changed:
        indices = [i for i, x in enumerate(bounds) if x != 0]

        index = choice(indices)

        changed_indices.append(index)

        possible_values = [x for x in range(0, bounds[index] + 1)
                           if x != genes[index]]

        genes[index] = choice(possible_values)

        if agenes[index] == 1:
            active_changed = True

    return Individual(genes, bounds, individual.params), changed_indices
Пример #4
0
 def apply(self, individual: Individual) -> Individual:
     if individual.active_genes[self.index] == 0:
         return None
     self.n_uses += 1
     genes = individual.genes[:]
     genes[self.index] = self.mutated
     return Individual(genes, individual.bounds, individual.params)
Пример #5
0
def jewellerybox():
    box = JewelleryBox(MatchPMStrategy())

    parent_genes = [1, 0, 0, 1, 1, 1, 0, 4, 2, 2, 1, 3, 6]
    mutated_genes_1 = [1, 0, 0, 1, 3, 1, 0, 4, 2, 2, 1, 3, 6]
    mutated_genes_2 = [1, 0, 0, 1, 1, 1, 0, 4, 2, 2, 5, 3, 6]

    parent = Individual(parent_genes, bounds, params)
    mutated_1 = Individual(mutated_genes_1, bounds, params)
    mutated_2 = Individual(mutated_genes_2, bounds, params)

    mutated_1.fitness = 95
    mutated_2.fitness = 90
    parent.fitness = 100
    box.add(GemSingleGene(mutated_1, parent, 4))
    box.add(GemSingleGene(mutated_2, parent, 10))

    return box
Пример #6
0
def test_add_to_full(individual: Individual, jewellerybox: JewelleryBox):
    """ Should replace the gem with least value """

    # there are already two individuals in jewellerybox (from conftest.py)
    jewellerybox.max_size = 2

    # individual fixture has no fitness
    individual.fitness = 100

    # get the smallest
    min_value = min(jewellerybox.gems.values())
    assert min_value == 5

    # add another
    better_ind = Individual(individual.genes[:], individual.bounds,
                            individual.params)
    better_ind.fitness = 30
    new_gem = GemSingleGene(better_ind, individual, 7)
    jewellerybox.add(new_gem)

    min_value = min(jewellerybox.gems.values())
    assert min_value == 10
Пример #7
0
    def test_equality(self, individual):
        """ Test the equality of two individuals """
        # create a new, same individual
        new_same_ind = Individual(individual.genes, individual.bounds,
                                  individual.params)

        # create individual with modified active gene
        mod_active_genes = individual.genes[:]
        mod_active_genes[2] = 2

        mod_act_ind = Individual(mod_active_genes, individual.bounds,
                                 individual.params)

        # create individual with modified inactive gene
        mod_inact_genes = individual.genes[:]
        mod_inact_genes[4] = 2

        mod_inact_ind = Individual(mod_inact_genes, individual.bounds,
                                   individual.params)

        assert individual == new_same_ind
        assert not (individual == mod_act_ind)
        assert individual != mod_act_ind
        assert individual == mod_inact_ind
Пример #8
0
def probabilistic_mutation(individual, rate=0.25):
    """ Perform a probabilistic mutation - at each gene position there is a
    chance it will mutate """
    
    genes = individual.genes[:]
    bounds = individual.bounds
    changed_indices = []

    for index in range(0, len(genes)):
        chance = random()
        if chance < rate:
            possible_values = [x for x in range(0, bounds[index] + 1)
                    if x != genes[index]]
            if len(possible_values) == 0:
                continue
            changed_indices.append(index)
            genes[index] = choice(possible_values)
    return Individual(genes, bounds, individual.params), changed_indices
Пример #9
0
def point_mutation(individual, _=None):
    """ perform a point mutation on given individual """

    genes = individual.genes[:]
    bounds = individual.bounds  # this does not change

    # handle case, when there is only one possible value
    # of gene at certain position
    indices = [i for i, x in enumerate(bounds) if x != 0]
    index = choice(indices)

    # construct the list of acceptable values
    possible_values = [x for x in range(
        0, bounds[index] + 1) if x != genes[index]]

    genes[index] = choice(possible_values)

    return Individual(genes, bounds, individual.params), index
Пример #10
0
def active_mutation(individual, _=None):
    """ Perform an active mutation - to-be mutated gene is chosen only
    from active genes """

    genes = individual.genes[:]
    bounds = individual.bounds
    agenes = individual.active_genes

    # simultaneously handle genes with only one possible values
    # and inactive genes
    indices = [i for i, (b, a) in enumerate(
        zip(bounds, agenes)) if b != 0 and a == 1]

    index = choice(indices)

    possible_values = [x for x in range(
        0, bounds[index] + 1) if x != genes[index]]

    genes[index] = choice(possible_values)

    return Individual(genes, bounds, individual.params), index
Пример #11
0
def test_hash(individual):
    """ Hash should be the same for Gems with
    same parameters """

    mutated_genes = individual.genes[:]
    mutated_genes_2 = individual.genes[:]
    mutated_genes[1] = 2
    mutated_genes_2[1] = 1
    mutated = Individual(mutated_genes, individual.bounds, individual.params)
    mutated2 = Individual(mutated_genes_2, individual.bounds,
                          individual.params)

    mutated.fitness = 100
    mutated2.fitness = 100
    individual.fitness = 100

    g = GemSingleGene(mutated, individual, 1)
    gg = GemSingleGene(mutated, individual, 1)
    ggg = GemSingleGene(mutated2, individual, 1)

    assert hash(g) == hash(gg)
    assert hash(g) != hash(ggg)
    assert hash(g) == hash(g)
Пример #12
0
def individual():
    genes = [1, 0, 0, 1, 1, 1, 0, 4, 2, 2, 3, 1, 6]
    #active [1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1]

    return Individual(genes, bounds, params)
Пример #13
0
 def apply(self, individual: Individual) -> Individual:
     self.n_uses += 1
     genes = individual.genes[:]
     for m_index, mutated in zip(self.m_indices, self.mutated):
         genes[m_index] = mutated
     return Individual(genes, individual.bounds, individual.params)
Пример #14
0
 def apply(self, individual: Individual) -> Individual:
     new_genes = individual.genes[:]
     new_genes[self.gene_index] = self.mutated
     return Individual(new_genes, individual.bounds, individual.params)
Пример #15
0
 def build(self):
     genes, bounds = self.gfactory.create()
     return Individual(genes, bounds, self.params)