def visualize(path, levels, threshold, ccore_enabled, **kwargs):
        sample = read_sample(path)

        clique_instance = clique(sample, levels, threshold, ccore=ccore_enabled)
        clique_instance.process()

        cells = clique_instance.get_cells()

        clique_visualizer.show_grid(cells, sample)
Пример #2
0
    def visualize(path, levels, threshold, ccore_enabled, **kwargs):
        sample = read_sample(path)

        clique_instance = clique(sample, levels, threshold, ccore=ccore_enabled)
        clique_instance.process()

        cells = clique_instance.get_cells()

        clique_visualizer.show_grid(cells, sample)
def template_clustering(data_path, intervals, density_threshold, **kwargs):
    print("Sample: '%s'." % os.path.basename(data_path))

    data = read_sample(data_path)

    clique_instance = clique(data, intervals, density_threshold)
    clique_instance.process()

    clusters = clique_instance.get_clusters()
    noise = clique_instance.get_noise()
    cells = clique_instance.get_cells()

    print([len(cluster) for cluster in clusters])

    clique_visualizer.show_grid(cells, data)

    visualizer = cluster_visualizer()
    visualizer.append_clusters(clusters, data)
    visualizer.append_cluster(noise, data, marker='x')
    visualizer.show()
Пример #4
0
intervals = 5
# Density threshold
threshold = 0
clique_instance = clique(data_values, intervals, threshold)

clique_instance.process()
clique_cluster = clique_instance.get_clusters()

noise = clique_instance.get_noise()
cells = clique_instance.get_cells()

print("Amount of clusters:", len(clique_cluster))
for cluster in clique_cluster:
    print(cluster)

labelList = [0] * 200
j = 1
for cluster in clique_cluster:
    for x in cluster:
        labelList[x] = j
    j = j + 1

labels = np.array(labelList)

clique_visualizer.show_grid(cells, data_values)
visualizer = cluster_visualizer_multidim()
visualizer.append_clusters(clique_cluster, data_values)

BETACV = betacv.betacv(data, labels)
print(BETACV)
Пример #5
0
    zeros[each] = 5
# for each in clique_cluster[4]:
#     zeros[each] = 1
g_answer = zeros

#print(g_answer)
sum = 0
for i in range(len(g_truth)):
    if g_answer[i] == g_truth[i]:
        sum += 1

rate = sum / len(g_truth)

print(rate)

#print(g_truth)
#print(g_answer)

print("Amount of clusters:", len(clique_cluster))

print(clique_cluster)
print(f"运行时间:{(t2-t1)/1e6}ms")  #运行时间
# 显示由算法形成的网格
clique_visualizer.show_grid(cells, TestData)
# 显示聚类结果
clique_visualizer.show_clusters(TestData, clique_cluster,
                                noise)  # show clustering results

#  准确率
print(f"准确率:{Coopcheckdiv(np.array(g_answer),data_M[:,0])}")