Пример #1
0
def rock(sample, eps, number_clusters, threshold):
    """
    @brief Clustering algorithm ROCK returns allocated clusters and noise that are consisted from input data. 
    @details Calculation is performed via CCORE (C/C++ part of the pyclustering)."
    
    @param[in] sample: input data - list of points where each point is represented by list of coordinates.
    @param[in] eps: connectivity radius (similarity threshold), points are neighbors if distance between them is less than connectivity radius.
    @param[in] number_clusters: defines number of clusters that should be allocated from the input data set.
    @param[in] threshold: value that defines degree of normalization that influences on choice of clusters for merging during processing.
    
    @return List of allocated clusters, each cluster contains indexes of objects in list of data.
    
    """
    
    pointer_data = package_builder(sample, c_double).create();

    ccore = ccore_library.get();

    ccore.rock_algorithm.restype = POINTER(pyclustering_package);
    package = ccore.rock_algorithm(pointer_data, c_double(eps), c_size_t(number_clusters), c_double(threshold));

    list_of_clusters = package_extractor(package).extract();
    ccore.free_pyclustering_package(package);
    
    return list_of_clusters;
Пример #2
0
    def templatePackUnpack(self, dataset, c_type_data = None):
        package_pointer = package_builder(dataset, c_type_data).create();
        unpacked_package = package_extractor(package_pointer).extract();

        packing_data = dataset;
        if (isinstance(packing_data, numpy.matrix)):
            packing_data = dataset.tolist();

        assert self.compare_containers(packing_data, unpacked_package);
Пример #3
0
def hhn_dynamic_get_central_evolution(ccore_hhn_dynamic_pointer, index_collection):
    ccore = ccore_library.get();

    ccore.hhn_dynamic_get_central_evolution.restype = POINTER(pyclustering_package);
    dynamic_package = ccore.hhn_dynamic_get_central_evolution(ccore_hhn_dynamic_pointer, c_size_t(index_collection));

    result = package_extractor(dynamic_package).extract();
    ccore.free_pyclustering_package(dynamic_package);

    return result;
Пример #4
0
def legion_dynamic_get_inhibitory_output(legion_dynamic_pointer):
    ccore = ccore_library.get();
    
    ccore.legion_dynamic_get_inhibitory_output.restype = POINTER(pyclustering_package);
    package = ccore.legion_dynamic_get_inhibitory_output(legion_dynamic_pointer);
    
    result = package_extractor(package).extract();
    ccore.free_pyclustering_package(package);
    
    return result;
Пример #5
0
def pcnn_dynamic_get_time(dynamic_pointer):
    ccore = ccore_library.get();
    
    ccore.pcnn_dynamic_get_time.restype = POINTER(pyclustering_package);
    package = ccore.pcnn_dynamic_get_time(dynamic_pointer);
    
    result = package_extractor(package).extract();
    ccore.free_pyclustering_package(package);
    
    return result;
Пример #6
0
def cure_get_means(cure_data_pointer):
    ccore = ccore_library.get();
    
    ccore.cure_get_means.restype = POINTER(pyclustering_package);
    package = ccore.cure_get_means(cure_data_pointer);
    
    result = package_extractor(package).extract();
    ccore.free_pyclustering_package(package);
    
    return result;
Пример #7
0
def pcnn_dynamic_allocate_spike_ensembles(dynamic_pointer):
    ccore = ccore_library.get();
    
    ccore.pcnn_dynamic_allocate_spike_ensembles.restype = POINTER(pyclustering_package);
    package = ccore.pcnn_dynamic_allocate_spike_ensembles(dynamic_pointer);
    
    result = package_extractor(package).extract();
    ccore.free_pyclustering_package(package);
    
    return result;
Пример #8
0
def syncpr_dynamic_allocate_sync_ensembles(pointer_dynamic, tolerance):
    ccore = ccore_library.get();
    
    ccore.syncpr_dynamic_allocate_sync_ensembles.restype = POINTER(pyclustering_package);
    package = ccore.syncpr_dynamic_allocate_sync_ensembles(pointer_dynamic, c_double(tolerance));
    
    result = package_extractor(package).extract();
    ccore.free_pyclustering_package(package);
    
    return result;
Пример #9
0
def syncpr_dynamic_get_output(pointer_dynamic):
    ccore = ccore_library.get();
    
    ccore.syncpr_dynamic_get_output.restype = POINTER(pyclustering_package);
    package = ccore.syncpr_dynamic_get_output(pointer_dynamic);
    
    result = package_extractor(package).extract();
    ccore.free_pyclustering_package(package);
    
    return result;
Пример #10
0
def agglomerative_algorithm(data, number_clusters, link):
    pointer_data = package_builder(data, c_double).create();

    ccore = ccore_library.get();
    ccore.agglomerative_algorithm.restype = POINTER(pyclustering_package);
    package = ccore.agglomerative_algorithm(pointer_data, c_size_t(number_clusters), c_size_t(link));

    result = package_extractor(package).extract();
    ccore.free_pyclustering_package(package);

    return result;
Пример #11
0
def bsas(sample, amount, threshold, metric_pointer):
    pointer_data = package_builder(sample, c_double).create()

    ccore = ccore_library.get()

    ccore.bsas_algorithm.restype = POINTER(pyclustering_package)
    package = ccore.bsas_algorithm(pointer_data, c_size_t(amount), c_double(threshold), metric_pointer)

    result = package_extractor(package).extract()
    ccore.free_pyclustering_package(package)

    return result[0], result[1]
Пример #12
0
def ttsas(sample, threshold1, threshold2, metric_pointer):
    pointer_data = package_builder(sample, c_double).create();

    ccore = ccore_library.get();

    ccore.ttsas_algorithm.restype = POINTER(pyclustering_package);
    package = ccore.ttsas_algorithm(pointer_data, c_double(threshold1), c_double(threshold2), metric_pointer);

    result = package_extractor(package).extract();
    ccore.free_pyclustering_package(package);

    return result[0], result[1];
Пример #13
0
def silhoeutte(sample, clusters, pointer_metric):
    pointer_data = package_builder(sample, c_double).create()
    pointer_clusters = package_builder(clusters, c_size_t).create()

    ccore = ccore_library.get()
    ccore.silhouette_algorithm.restype = POINTER(pyclustering_package)
    package = ccore.silhouette_algorithm(pointer_data, pointer_clusters, pointer_metric)

    result = package_extractor(package).extract()
    ccore.free_pyclustering_package(package)

    return result
Пример #14
0
def fcm_algorithm(sample, centers, m, tolerance, itermax):
    pointer_data = package_builder(sample, c_double).create()
    pointer_centers = package_builder(centers, c_double).create()

    ccore = ccore_library.get()

    ccore.fcm_algorithm.restype = POINTER(pyclustering_package)
    package = ccore.fcm_algorithm(pointer_data, pointer_centers, c_double(m), c_double(tolerance), c_size_t(itermax))

    result = package_extractor(package).extract()
    ccore.free_pyclustering_package(package)

    return result
Пример #15
0
def kmedians(sample, centers, tolerance, itermax, metric_pointer):
    pointer_data = package_builder(sample, c_double).create()
    pointer_centers = package_builder(centers, c_double).create()
    
    ccore = ccore_library.get()
    
    ccore.kmedians_algorithm.restype = POINTER(pyclustering_package)
    package = ccore.kmedians_algorithm(pointer_data, pointer_centers, c_double(tolerance), c_size_t(itermax), metric_pointer)
    
    result = package_extractor(package).extract()
    ccore.free_pyclustering_package(package)
    
    return result[0], result[1]
Пример #16
0
def xmeans(sample, centers, kmax, tolerance, criterion):
    pointer_data = package_builder(sample, c_double).create();
    pointer_centers = package_builder(centers, c_double).create();
    
    ccore = ccore_library.get();
    
    ccore.xmeans_algorithm.restype = POINTER(pyclustering_package);
    package = ccore.xmeans_algorithm(pointer_data, pointer_centers, c_size_t(kmax), c_double(tolerance), c_uint(criterion));
    
    result = package_extractor(package).extract();
    ccore.free_pyclustering_package(package);
    
    return result[0], result[1];
Пример #17
0
def silhoeutte_ksearch(sample, kmin, kmax, allocator):
    pointer_data = package_builder(sample, c_double).create()

    ccore = ccore_library.get()
    ccore.silhouette_ksearch_algorithm.restype = POINTER(pyclustering_package)
    package = ccore.silhouette_ksearch_algorithm(pointer_data, c_size_t(kmin), c_size_t(kmax), c_size_t(allocator))

    results = package_extractor(package).extract()
    ccore.free_pyclustering_package(package)

    return (results[silhouette_ksearch_package_indexer.SILHOUETTE_KSEARCH_PACKAGE_INDEX_AMOUNT][0],
            results[silhouette_ksearch_package_indexer.SILHOUETTE_KSEARCH_PACKAGE_INDEX_SCORE][0],
            results[silhouette_ksearch_package_indexer.SILHOUETTE_KSEARCH_PACKAGE_INDEX_SCORES])
Пример #18
0
def kmedoids(sample, medoids, tolerance, itermax, metric_pointer, data_type):
    pointer_data = package_builder(sample, c_double).create()
    medoids_package = package_builder(medoids, c_size_t).create()
    c_data_type = convert_data_type(data_type)
    
    ccore = ccore_library.get()
    
    ccore.kmedoids_algorithm.restype = POINTER(pyclustering_package)
    package = ccore.kmedoids_algorithm(pointer_data, medoids_package, c_double(tolerance), c_size_t(itermax), metric_pointer, c_data_type)
    
    result = package_extractor(package).extract()
    ccore.free_pyclustering_package(package)

    return result[0], result[1]
Пример #19
0
def dbscan(sample, eps, min_neighbors, data_type):
    pointer_data = package_builder(sample, c_double).create()
    c_data_type = convert_data_type(data_type)
    
    ccore = ccore_library.get()
    
    ccore.dbscan_algorithm.restype = POINTER(pyclustering_package)
    package = ccore.dbscan_algorithm(pointer_data, c_double(eps), c_size_t(min_neighbors), c_data_type)

    list_of_clusters = package_extractor(package).extract()
    ccore.free_pyclustering_package(package)
    
    noise = list_of_clusters[len(list_of_clusters) - 1]
    list_of_clusters.remove(noise)

    return list_of_clusters, noise
Пример #20
0
def clique(sample, intervals, threshold):
    pointer_data = package_builder(sample, c_double).create()

    ccore = ccore_library.get()

    ccore.clique_algorithm.restype = POINTER(pyclustering_package)
    package = ccore.clique_algorithm(pointer_data, c_size_t(intervals), c_size_t(threshold))

    results = package_extractor(package).extract()
    ccore.free_pyclustering_package(package)

    return (results[clique_package_indexer.CLIQUE_PACKAGE_INDEX_CLUSTERS],
            results[clique_package_indexer.CLIQUE_PACKAGE_INDEX_NOISE],
            results[clique_package_indexer.CLIQUE_PACKAGE_INDEX_LOGICAL_LOCATION],
            results[clique_package_indexer.CLIQUE_PACKAGE_INDEX_MAX_CORNER],
            results[clique_package_indexer.CLIQUE_PACKAGE_INDEX_MIN_CORNER],
            results[clique_package_indexer.CLIQUE_PACKAGE_INDEX_BLOCK_POINTS])
Пример #21
0
def optics(sample, radius, minimum_neighbors, amount_clusters):
    amount = amount_clusters
    if (amount is None):
        amount = 0

    pointer_data = package_builder(sample, c_double).create()

    ccore = load_core()

    ccore.optics_algorithm.restype = POINTER(pyclustering_package)
    package = ccore.optics_algorithm(pointer_data, c_double(radius),
                                     c_size_t(minimum_neighbors),
                                     c_size_t(amount))

    results = package_extractor(package).extract()
    ccore.free_pyclustering_package(package)

    return (results[optics_package_indexer.OPTICS_PACKAGE_INDEX_CLUSTERS],
            results[optics_package_indexer.OPTICS_PACKAGE_INDEX_NOISE],
            results[optics_package_indexer.OPTICS_PACKAGE_INDEX_ORDERING],
            results[optics_package_indexer.OPTICS_PACKAGE_INDEX_RADIUS][0])
def elbow(sample, kmin, kmax, initializer):
    pointer_data = package_builder(sample, c_double).create()

    ccore = ccore_library.get()
    if initializer == elbow_center_initializer.KMEANS_PLUS_PLUS:
        ccore.elbow_method_ikpp.restype = POINTER(pyclustering_package)
        package = ccore.elbow_method_ikpp(pointer_data, c_size_t(kmin),
                                          c_size_t(kmax))
    elif initializer == elbow_center_initializer.RANDOM:
        ccore.elbow_method_irnd.restype = POINTER(pyclustering_package)
        package = ccore.elbow_method_irnd(pointer_data, c_size_t(kmin),
                                          c_size_t(kmax))
    else:
        raise ValueError("Not supported type of center initializer '" +
                         str(initializer) + "'.")

    results = package_extractor(package).extract()
    ccore.free_pyclustering_package(package)

    return (results[elbow_package_indexer.ELBOW_PACKAGE_INDEX_AMOUNT][0],
            results[elbow_package_indexer.ELBOW_PACKAGE_INDEX_WCE])
Пример #23
0
def antmean_clustering_process(params, count_clusters, samples):
    ccore = load_core()

    algorithm_params = c_antcolony_clustering_parameters()
    algorithm_params.ro = c_double(params.ro)
    algorithm_params.pheramone_init = c_double(params.pheramone_init)
    algorithm_params.iterations = c_uint(params.iterations)
    algorithm_params.count_ants = c_uint(params.count_ants)

    algorithm_params = pointer(algorithm_params)

    sample_package = package_builder(samples, c_double).create()

    ccore.antmean_algorithm.restype = POINTER(pyclustering_package)
    package = ccore.antmean_algorithm(sample_package, algorithm_params,
                                      count_clusters)

    result = package_extractor(package).extract()
    ccore.free_pyclustering_package(package)

    return result
Пример #24
0
def elbow(sample, kmin, kmax, kstep, initializer, random_state):
    random_state = random_state or -1
    pointer_data = package_builder(sample, c_double).create()

    ccore = ccore_library.get()
    if initializer == elbow_center_initializer.KMEANS_PLUS_PLUS:
        ccore.elbow_method_ikpp.restype = POINTER(pyclustering_package)
        package = ccore.elbow_method_ikpp(pointer_data, c_size_t(kmin), c_size_t(kmax), c_size_t(kstep), c_longlong(random_state))
    elif initializer == elbow_center_initializer.RANDOM:
        ccore.elbow_method_irnd.restype = POINTER(pyclustering_package)
        package = ccore.elbow_method_irnd(pointer_data, c_size_t(kmin), c_size_t(kmax), c_size_t(kstep), c_longlong(random_state))
    else:
        raise ValueError("Not supported type of center initializer '" + str(initializer) + "'.")

    results = package_extractor(package).extract()
    ccore.free_pyclustering_package(package)

    if isinstance(results, bytes):
        raise RuntimeError(results.decode('utf-8'))

    return (results[elbow_package_indexer.ELBOW_PACKAGE_INDEX_AMOUNT][0],
            results[elbow_package_indexer.ELBOW_PACKAGE_INDEX_WCE])
Пример #25
0
def clique(sample, intervals, threshold):
    pointer_data = package_builder(sample, c_double).create()

    ccore = ccore_library.get()

    ccore.clique_algorithm.restype = POINTER(pyclustering_package)
    package = ccore.clique_algorithm(pointer_data, c_size_t(intervals),
                                     c_size_t(threshold))

    results = package_extractor(package).extract()
    ccore.free_pyclustering_package(package)

    if isinstance(results, bytes):
        raise RuntimeError(results.decode('utf-8'))

    return (
        results[clique_package_indexer.CLIQUE_PACKAGE_INDEX_CLUSTERS],
        results[clique_package_indexer.CLIQUE_PACKAGE_INDEX_NOISE],
        results[clique_package_indexer.CLIQUE_PACKAGE_INDEX_LOGICAL_LOCATION],
        results[clique_package_indexer.CLIQUE_PACKAGE_INDEX_MAX_CORNER],
        results[clique_package_indexer.CLIQUE_PACKAGE_INDEX_MIN_CORNER],
        results[clique_package_indexer.CLIQUE_PACKAGE_INDEX_BLOCK_POINTS])
Пример #26
0
def optics(sample, radius, minimum_neighbors, amount_clusters, data_type):
    amount = amount_clusters
    if amount is None:
        amount = 0

    pointer_data = package_builder(sample, c_double).create()
    c_data_type = convert_data_type(data_type)
    
    ccore = ccore_library.get()
    
    ccore.optics_algorithm.restype = POINTER(pyclustering_package)
    package = ccore.optics_algorithm(pointer_data, c_double(radius), c_size_t(minimum_neighbors), c_size_t(amount), c_data_type)

    results = package_extractor(package).extract()
    ccore.free_pyclustering_package(package)

    return (results[optics_package_indexer.OPTICS_PACKAGE_INDEX_CLUSTERS], 
            results[optics_package_indexer.OPTICS_PACKAGE_INDEX_NOISE], 
            results[optics_package_indexer.OPTICS_PACKAGE_INDEX_ORDERING],
            results[optics_package_indexer.OPTICS_PACKAGE_INDEX_RADIUS][0],
            results[optics_package_indexer.OPTICS_PACKAGE_INDEX_OPTICS_OBJECTS_INDEX],
            results[optics_package_indexer.OPTICS_PACKAGE_INDEX_OPTICS_OBJECTS_CORE_DISTANCE],
            results[optics_package_indexer.OPTICS_PACKAGE_INDEX_OPTICS_OBJECTS_REACHABILITY_DISTANCE])
Пример #27
0
def optics(sample, radius, minimum_neighbors, amount_clusters, data_type):
    amount = amount_clusters
    if amount is None:
        amount = 0

    pointer_data = package_builder(sample, c_double).create()
    c_data_type = convert_data_type(data_type)
    
    ccore = ccore_library.get()
    
    ccore.optics_algorithm.restype = POINTER(pyclustering_package)
    package = ccore.optics_algorithm(pointer_data, c_double(radius), c_size_t(minimum_neighbors), c_size_t(amount), c_data_type)

    results = package_extractor(package).extract()
    ccore.free_pyclustering_package(package)

    return (results[optics_package_indexer.OPTICS_PACKAGE_INDEX_CLUSTERS], 
            results[optics_package_indexer.OPTICS_PACKAGE_INDEX_NOISE], 
            results[optics_package_indexer.OPTICS_PACKAGE_INDEX_ORDERING],
            results[optics_package_indexer.OPTICS_PACKAGE_INDEX_RADIUS][0],
            results[optics_package_indexer.OPTICS_PACKAGE_INDEX_OPTICS_OBJECTS_INDEX],
            results[optics_package_indexer.OPTICS_PACKAGE_INDEX_OPTICS_OBJECTS_CORE_DISTANCE],
            results[optics_package_indexer.OPTICS_PACKAGE_INDEX_OPTICS_OBJECTS_REACHABILITY_DISTANCE])
Пример #28
0
    def templatePackUnpack(self, dataset, c_type_data=None):
        package_pointer = package_builder(dataset, c_type_data).create()
        unpacked_package = package_extractor(package_pointer).extract()

        assert self.compare_containers(dataset, unpacked_package)