Пример #1
0
# -*- coding: utf-8 -*-
"""
This file is part of pyCMBS.
(c) 2012- Alexander Loew
For COPYING and LICENSE details, please refer to the LICENSE file
"""
from pycmbs.data import Data
from pycmbs.plots import HovmoellerPlot
import matplotlib.pyplot as plt
import numpy as np
import datetime

file_name = '../../../pycmbs/examples/example_data/air.mon.mean.nc'
A = Data(file_name, 'air', lat_name='lat', lon_name='lon', read=True, label='air temperature')

# a quick plot as well as a projection plot
H = HovmoellerPlot(A)
H.plot(climits=(-20., 20.))
H.ax.set_yticks([])
H.ax.set_ylabel('lat')
plt.show()
Пример #2
0
 def test_Hovmoeller(self):
     H = HovmoellerPlot(self.D)
     with self.assertRaises(ValueError):
         H.plot()
     H.plot(climits=[0., 1.])
Пример #3
0
print 'ZonalPlot ...'
Z=ZonalPlot()
Z.plot(D)

print 'Some LinePlot'
L=LinePlot(regress=True, title='This is a LinePlot with regression')
L.plot(D, label='2m air temperature')
L.plot(P, label='Precipitable water', ax=L.ax.twinx(), color='green')  # use secondary axis for plotting here
L.legend()

print 'Scatterplot between different variables ...'
S=ScatterPlot(D)  # scatterplot is initialized with definition of X-axis object
S.plot(P)
S.legend()

print 'Hovmoeller diagrams ...'
hm = HovmoellerPlot(D)
hm.plot(climits=[-20.,30.])

print '... generate Hovmoeller plot from deseasonalized anomalies'
ha=HovmoellerPlot(D.get_deseasonalized_anomaly(base='all'))
ha.plot(climits=[-2.,2.], cmap='RdBu_r')

plt.show()
r=raw_input("Press Enter to continue...")

plt.close('all')


Пример #4
0
 def test_Hovmoeller(self):
     H = HovmoellerPlot(self.D)
     with self.assertRaises(ValueError):
         H.plot()
     H.plot(climits=[0., 1.])
Пример #5
0
# -*- coding: utf-8 -*-
"""
This file is part of pyCMBS.
(c) 2012- Alexander Loew
For COPYING and LICENSE details, please refer to the LICENSE file
"""
from pycmbs.data import Data
from pycmbs.plots import HovmoellerPlot
import matplotlib.pyplot as plt
import numpy as np
import datetime

file_name = '../../../pycmbs/examples/example_data/air.mon.mean.nc'
A = Data(file_name,
         'air',
         lat_name='lat',
         lon_name='lon',
         read=True,
         label='air temperature')

# a quick plot as well as a projection plot
H = HovmoellerPlot(A)
H.plot(climits=(-20., 20.))
H.ax.set_yticks([])
H.ax.set_ylabel('lat')
plt.show()