Пример #1
0
map_plot(t,use_basemap=True,title='Temporal stdv.',show_stat=True)


print 'Some LinePlot'
L=LinePlot(regress=True, title='This is a LinePlot with regression')
L.plot(D, label='2m air temperature')
L.plot(P, label='Precipitable water', ax=L.ax.twinx(), color='green')  # use secondary axis for plotting here
L.legend()

print 'Scatterplot between different variables ...'
#here we just generate some random second variable
D1 = D.copy()
D1.data += np.random.random(D.shape)*50.
S=ScatterPlot(D)  # scatterplot is initialized with definition of X-axis object
S.plot(D1)
S.legend()

print 'Temporal trend ...'
f=plt.figure()
ax1=f.add_subplot(221)
ax2=f.add_subplot(222)
ax3=f.add_subplot(223)
ax4=f.add_subplot(224)
R,S,I,P = D.temporal_trend(return_object=True)
map_plot(R, use_basemap=True, ax=ax1)
map_plot(S, use_basemap=True, ax=ax2)
map_plot(I, use_basemap=True, ax=ax3)
map_plot(P, use_basemap=True, ax=ax4)
f.suptitle('Example of temporal correlation analysis results', size=20)

Пример #2
0
 def test_ScatterPlot_GeneralWithNormalization(self):
     x = self.D
     S = ScatterPlot(x, normalize_data=True)
     S.plot(x)
     S.legend()
Пример #3
0
 def test_ScatterPlot_FldemeanFalse(self):
     x = self.D
     S = ScatterPlot(x)
     S.plot(x, fldmean=False)
     S.legend()
Пример #4
0
 def test_ScatterPlot_General(self):
     x = self.D
     S = ScatterPlot(x)
     S.plot(x)
     S.legend()
Пример #5
0
 def test_ScatterPlot_FldemeanFalse(self):
     x = self.D
     S = ScatterPlot(x)
     S.plot(x, fldmean=False)
     S.legend()
Пример #6
0
 def test_ScatterPlot_GeneralWithNormalization(self):
     x = self.D
     S = ScatterPlot(x, normalize_data=True)
     S.plot(x)
     S.legend()
Пример #7
0
 def test_ScatterPlot_General(self):
     x = self.D
     S = ScatterPlot(x)
     S.plot(x)
     S.legend()
print 'Some LinePlot'
L = LinePlot(regress=True, title='This is a LinePlot with regression')
L.plot(D, label='2m air temperature')
L.plot(P, label='Precipitable water', ax=L.ax.twinx(),
       color='green')  # use secondary axis for plotting here
L.legend()

print 'Scatterplot between different variables ...'
#here we just generate some random second variable
D1 = D.copy()
D1.data += np.random.random(D.shape) * 50.
S = ScatterPlot(
    D)  # scatterplot is initialized with definition of X-axis object
S.plot(D1)
S.legend()

print 'Temporal trend ...'
f = plt.figure()
ax1 = f.add_subplot(221)
ax2 = f.add_subplot(222)
ax3 = f.add_subplot(223)
ax4 = f.add_subplot(224)
R, S, I, P = D.temporal_trend(return_object=True)
map_plot(R, use_basemap=True, ax=ax1)
map_plot(S, use_basemap=True, ax=ax2)
map_plot(I, use_basemap=True, ax=ax3)
map_plot(P, use_basemap=True, ax=ax4)
f.suptitle('Example of temporal correlation analysis results', size=20)

print 'Calculate climatology and plot ...'