Пример #1
0
def nll_mtlr(phi, idx_durations, events, reduction='mean', epsilon=1e-7):
    """Negative log-likelihood for the MTLR parametrized model [1] [2].

    This is essentially a PMF parametrization with an extra cumulative sum, as explained in [3].
    
    Arguments:
        phi {torch.tensor} -- Estimates in (-inf, inf), where pmf = somefunc(phi).
        idx_durations {torch.tensor} -- Event times represented as indices.
        events {torch.tensor} -- Indicator of event (1.) or censoring (0.).
            Same length as 'idx_durations'.
        reduction {string} -- How to reduce the loss.
            'none': No reduction.
            'mean': Mean of tensor.
            'sum: sum.
    
    Returns:
        torch.tensor -- The negative log-likelihood.

    References:
    [1] Chun-Nam Yu, Russell Greiner, Hsiu-Chin Lin, and Vickie Baracos.
        Learning patient- specific cancer survival distributions as a sequence of dependent regressors.
        In Advances in Neural Information Processing Systems 24, pages 1845–1853.
        Curran Associates, Inc., 2011.
        https://papers.nips.cc/paper/4210-learning-patient-specific-cancer-survival-distributions-as-a-sequence-of-dependent-regressors.pdf

    [2] Stephane Fotso. Deep neural networks for survival analysis based on a multi-task framework.
        arXiv preprint arXiv:1801.05512, 2018.
        https://arxiv.org/pdf/1801.05512.pdf

    [3] Håvard Kvamme and Ørnulf Borgan. Continuous and Discrete-Time Survival Prediction
        with Neural Networks. arXiv preprint arXiv:1910.06724, 2019.
        https://arxiv.org/pdf/1910.06724.pdf
    """
    phi = utils.cumsum_reverse(phi, dim=1)
    return nll_pmf(phi, idx_durations, events, reduction, epsilon)
Пример #2
0
 def predict_pmf(self,
                 input,
                 batch_size=8224,
                 numpy=None,
                 eval_=True,
                 to_cpu=False,
                 num_workers=0):
     preds = self.predict(input, batch_size, False, eval_, False, to_cpu,
                          num_workers)
     preds = utils.cumsum_reverse(preds, dim=1)
     pmf = utils.pad_col(preds).softmax(1)[:, :-1]
     return utils.array_or_tensor(pmf, numpy, input)
Пример #3
0
def test_cumsum_reverse_dim_1():
    torch.manual_seed(1234)
    x = torch.randn(5, 16)
    res_np = x.numpy()[:, ::-1].cumsum(1)[:, ::-1]
    res = cumsum_reverse(x, dim=1)
    assert np.abs(res.numpy() - res_np).max() < 1e-6
Пример #4
0
def test_cumsum_reverse_error_dim():
    x = torch.randn((5, 3))
    with pytest.raises(NotImplementedError):
        cumsum_reverse(x, dim=0)
    with pytest.raises(NotImplementedError):
        cumsum_reverse(x, dim=2)