Пример #1
0
def ALL_IN_MIMO_SpeedTest(x,l_b,mu,ovsmpl,R2 = 2):
# Preparations
    C_Type = x.dtype
    NSyms =int(len(x[0,:])/ovsmpl)
    NMux = len(x[:,0])
    stream = cuda.stream()

    x_o = np.zeros(NMux*NSyms,dtype = C_Type).reshape(NMux,NSyms)
    NBlocks = int(NSyms/l_b - 1)
    
    # Setup Filter Variables
    
    O = np.zeros(l_b,dtype = C_Type)
    I = np.ones(l_b,dtype = C_Type) * R2 
    
    h = np.zeros(l_b * 2 * NMux * NMux,dtype = C_Type).reshape(NMux,NMux,l_b * 2)
    H = np.zeros(l_b * 2 * NMux * NMux * ovsmpl,dtype = C_Type).reshape(NMux,NMux,ovsmpl,l_b * 2)

    CTap = np.int(l_b / 2)
    for OUT in range(NMux):
        h[OUT,OUT,CTap] = 1/ovsmpl + 0j
    for IN in range(NMux):
        for OUT in range(NMux):
            for S in range(ovsmpl):
                H[IN,OUT,S,:] = np.fft.fft(h[IN,OUT,:])

    H = H.reshape(NMux*NMux*ovsmpl*l_b*2)

    # Intermediate values
    X_i = np.zeros(NMux*ovsmpl*l_b*2,dtype = C_Type)
    X_o = np.zeros(NMux*NMux*l_b*2,dtype = C_Type)

    E = np.zeros(l_b * 2 * NMux * NMux * ovsmpl,dtype = C_Type)
    s = np.zeros(l_b * 2 * NMux * NMux * ovsmpl,dtype = C_Type)


    # FFT planning
    DBlock_IN_S_FFT = GFFT.FFTPlan((l_b*2,),C_Type,C_Type,NMux*ovsmpl*NBlocks,stream = stream)
    DBlock_IN_OUT_FFT = GFFT.FFTPlan((l_b*2,),C_Type,C_Type,NMux*NMux,stream = stream)
    DBlock_IN_OUT_S_FFT = GFFT.FFTPlan((l_b*2,),C_Type,C_Type,NMux*NMux*ovsmpl,stream = stream)
     
    ## Transmit TO GPU
    
    I = cuda.to_device(I,stream = stream)
    s= cuda.to_device(s,stream = stream)
    H = cuda.to_device(H,stream = stream)
    X_o = cuda.to_device(X_o,stream = stream)
    E = cuda.to_device(E,stream = stream)
    x_o = cuda.to_device(x_o,stream = stream)
    X_i = cuda.to_device(X_i,stream = stream)
    x = cuda.to_device(x,stream = stream)
    
    # Start
    ovsmpl_OvlapSamps = (NBlocks) * l_b*2
    mux_OvlapSamps = ovsmpl_OvlapSamps * ovsmpl
    x_i = np.zeros(NMux*mux_OvlapSamps, dtype = C_Type)
    x_i = cuda.to_device(x_i)

    GetAllBlocks[(NBlocks,NMux,ovsmpl),l_b*2](x,x_i,l_b,NSyms,ovsmpl,ovsmpl_OvlapSamps,mux_OvlapSamps)
    DBlock_IN_S_FFT.forward(x_i,x_i)
    
    t_comp = 90
    t_fft_inv_1 = 90
    t_Reduce = 90
    t_Calc_E = 90
    t_FFT_EE = 90
    t_compwXI = 90
    t_IFFT_ES = 90
    t_OVLP = 90
    t_FFT_SS = 90
    t_UpdateH = 90
    for BLOCK in range(1,NBlocks):
        # Compensation
        start = timer()         
        Compensate_ALLIN[(NMux,NMux),l_b*2](x_i,X_o,H,l_b,ovsmpl,ovsmpl_OvlapSamps,mux_OvlapSamps,BLOCK,NMux)
        t_comp = min([t_comp, timer()-start])
        
        start = timer()         
        DBlock_IN_OUT_FFT.inverse(X_o,X_o)
        t_fft_inv_1 = min([t_fft_inv_1 , timer()-start])

        start = timer()         
        Reduce[(NMux,NMux),l_b*2](X_o,x_o,NMux,l_b,BLOCK)
        t_Reduce = min([t_Reduce , timer()-start])
        
        
        # Tap Updates
        start = timer()         
        CalcE_SUM[(NMux,NMux,ovsmpl),l_b*2](x_o,X_o,E,NMux,l_b,BLOCK,I,ovsmpl)
        t_Calc_E = min([t_Calc_E , timer()-start])
        
        start = timer()         
        DBlock_IN_OUT_S_FFT.forward(E,E) 
        t_FFT_EE = min([t_FFT_EE , timer()-start])

        start = timer()         
        CompensateWithInput_ALL_IN[(NMux,NMux,ovsmpl),l_b*2](E,x_i,BLOCK,l_b,NMux,ovsmpl,ovsmpl_OvlapSamps,mux_OvlapSamps)
        t_compwXI = min([t_compwXI , timer()-start])

        start = timer()         
        DBlock_IN_OUT_S_FFT.inverse(E,s)
        t_IFFT_ES = min([t_IFFT_ES , timer()-start])
        
        start = timer()         
        OverlapS[(NMux,NMux,ovsmpl),l_b](s,l_b,NMux,ovsmpl)
        t_OVLP = min([t_OVLP , timer()-start])
        
        start = timer()         
        DBlock_IN_OUT_S_FFT.forward(s,s)
        t_FFT_SS = min([t_FFT_SS , timer()-start])
        
        start = timer()         
        UpdateH[(NMux,NMux,ovsmpl),l_b*2](H,s,mu,l_b,NMux,ovsmpl)
        t_UpdateH = min([t_UpdateH , timer()-start])
       
    return np.array([t_comp,t_fft_inv_1,t_Calc_E,t_FFT_EE,t_compwXI,t_IFFT_ES,t_OVLP,t_FFT_SS,t_UpdateH])
Пример #2
0
    def __init__(self, Nr, Nz, use_cuda=False, nthreads=None):
        """
        Initialize an FFT object

        Parameters
        ----------
        Nr: int
           Number of grid points along the r axis (axis -1)

        Nz: int
           Number of grid points along the z axis (axis 0)

        use_cuda: bool, optional
           Whether to perform the Fourier transform on the z axis

        nthreads : int, optional
            Number of threads for the FFTW transform.
            If None, the default number of threads of numba is used
            (environment variable NUMBA_NUM_THREADS)
        """
        # Check whether to use cuda
        self.use_cuda = use_cuda
        if (self.use_cuda is True) and (cuda_installed is False):
            self.use_cuda = False
            print('** Cuda not available for Fourier transform.')
            print('** Performing the Fourier transform on the CPU.')

        # Check whether to use MKL
        self.use_mkl = mkl_installed

        # Initialize the object for calculation on the GPU
        if self.use_cuda:
            # Initialize the dimension of the grid and blocks
            self.dim_grid, self.dim_block = cuda_tpb_bpg_2d(Nz, Nr)

            # Initialize 1d buffer for cufft
            self.buffer1d_in = cuda.device_array((Nz * Nr, ),
                                                 dtype=np.complex128)
            self.buffer1d_out = cuda.device_array((Nz * Nr, ),
                                                  dtype=np.complex128)
            # Initialize the cuda libraries object
            self.fft = cufft.FFTPlan(shape=(Nz, ),
                                     itype=np.complex128,
                                     otype=np.complex128,
                                     batch=Nr)
            self.blas = cublas.Blas()  # For normalization of the iFFT
            self.inv_Nz = 1. / Nz  # For normalization of the iFFT

        # Initialize the object for calculation on the CPU
        else:

            # For MKL FFT
            if self.use_mkl:
                # Initialize the MKL plan with dummy array
                spect_buffer = np.zeros((Nz, Nr), dtype=np.complex128)
                self.mklfft = MKLFFT(spect_buffer)

            # For FFTW
            else:
                # Determine number of threads
                if nthreads is None:
                    # Get the default number of threads for numba
                    nthreads = numba.config.NUMBA_NUM_THREADS
                # Initialize the FFT plan with dummy arrays
                interp_buffer = np.zeros((Nz, Nr), dtype=np.complex128)
                spect_buffer = np.zeros((Nz, Nr), dtype=np.complex128)
                self.fft = pyfftw.FFTW(interp_buffer,
                                       spect_buffer,
                                       axes=(0, ),
                                       direction='FFTW_FORWARD',
                                       threads=nthreads)
                self.ifft = pyfftw.FFTW(spect_buffer,
                                        interp_buffer,
                                        axes=(0, ),
                                        direction='FFTW_BACKWARD',
                                        threads=nthreads)
Пример #3
0
def ALL_IN_MIMO(x,l_b,mu,ovsmpl,R2 = 2):
# Preparations
    C_Type = x.dtype
    NSyms =int(len(x[0,:])/ovsmpl)
    NMux = len(x[:,0])

    x_o = np.zeros(NMux*NSyms,dtype = C_Type).reshape(NMux,NSyms)
    NBlocks = int(NSyms/l_b - 1)
    
    # Setup Filter Variables
    
    O = np.zeros(l_b,dtype = C_Type)
    I = np.ones(l_b,dtype = C_Type) * R2 
    
    h = np.zeros(l_b * 2 * NMux * NMux,dtype = C_Type).reshape(NMux,NMux,l_b * 2)
    H = np.zeros(l_b * 2 * NMux * NMux * ovsmpl,dtype = C_Type).reshape(NMux,NMux,ovsmpl,l_b * 2)

    CTap = np.int(l_b / 2)
    for OUT in range(NMux):
        h[OUT,OUT,CTap] = 1/ovsmpl + 0j
    for IN in range(NMux):
        for OUT in range(NMux):
            for S in range(ovsmpl):
                H[IN,OUT,S,:] = np.fft.fft(h[IN,OUT,:])

    H = H.reshape(NMux*NMux*ovsmpl*l_b*2)

    # Intermediate values
    X_i = np.zeros(NMux*ovsmpl*l_b*2,dtype = C_Type)
    X_o = np.zeros(NMux*NMux*l_b*2,dtype = C_Type)

    E = np.zeros(l_b * 2 * NMux * NMux * ovsmpl,dtype = C_Type)
    s = np.zeros(l_b * 2 * NMux * NMux * ovsmpl,dtype = C_Type)


    # FFT planning
    DBlock_IN_S_FFT = GFFT.FFTPlan((l_b*2,),C_Type,C_Type,NMux*ovsmpl*NBlocks)
    DBlock_IN_OUT_FFT = GFFT.FFTPlan((l_b*2,),C_Type,C_Type,NMux*NMux)
    DBlock_IN_OUT_S_FFT = GFFT.FFTPlan((l_b*2,),C_Type,C_Type,NMux*NMux*ovsmpl)

    ## Transmit TO GPU
    
    I = cuda.to_device(I)
    s= cuda.to_device(s)
    H = cuda.to_device(H)
    X_o = cuda.to_device(X_o)
    E = cuda.to_device(E)
    x_o = cuda.to_device(x_o)
    X_i = cuda.to_device(X_i)
    x = cuda.to_device(x)
    
    # Start
    ovsmpl_OvlapSamps = (NBlocks) * l_b*2
    mux_OvlapSamps = ovsmpl_OvlapSamps * ovsmpl
    x_i = np.zeros(NMux*mux_OvlapSamps, dtype = C_Type)
    

    GetAllBlocks[(NBlocks,NMux,ovsmpl),l_b*2](x,x_i,l_b,NSyms,ovsmpl,ovsmpl_OvlapSamps,mux_OvlapSamps)
    DBlock_IN_S_FFT.forward(x_i,x_i)
    
    
    for BLOCK in range(1,NBlocks):
        # Compensation
                        
        Compensate_ALLIN[(NMux,NMux),l_b*2](x_i,X_o,H,l_b,ovsmpl,ovsmpl_OvlapSamps,mux_OvlapSamps,BLOCK,NMux)
        DBlock_IN_OUT_FFT.inverse(X_o,X_o)
        CalcE_SUM[(NMux,NMux,ovsmpl),l_b*2](x_o,X_o,E,NMux,l_b,BLOCK,I,ovsmpl)
        
        DBlock_IN_OUT_S_FFT.forward(E,E) 
        CompensateWithInput_ALL_IN[(NMux,NMux,ovsmpl),l_b*2](E,x_i,BLOCK,l_b,NMux,ovsmpl,ovsmpl_OvlapSamps,mux_OvlapSamps)
    
        DBlock_IN_OUT_S_FFT.inverse(E,s)
        OverlapS[(NMux,NMux,ovsmpl),l_b](s,l_b,NMux,ovsmpl)
        DBlock_IN_OUT_S_FFT.forward(s,s)
        UpdateH[(NMux,NMux,ovsmpl),l_b*2](H,s,mu,l_b,NMux,ovsmpl)

       
    return x_o.copy_to_host()
Пример #4
0
import pyculib.fft as fft
import time
import numba

lb = 64
sizediv = 8

nmodes = 1
ovsmpl = 1
ovconj = 1

data = np.ones((lb), dtype=np.complex128)
nblocks = 10000

shp_pyc = (lb)
plan = fft.FFTPlan((lb, ), np.complex128, np.complex128, 1)

arr_pyculib = cuda.to_device(data.reshape(shp_pyc))
arr_out_pyculib = cuda.device_array_like(arr_pyculib)
start = time.time()
for i_block in range(int(nblocks)):
    plan.forward(arr_pyculib, arr_out_pyculib)

print(arr_out_pyculib[0])
end = time.time()
print("Time pyculib = " + str(end - start))

arr_Martin = cuda.to_device(data)
arr_out_martin = cuda.device_array_like(arr_Martin)