Пример #1
0
    def antennas_iq_site_to_array(cls,
                                  data_dict: OrderedDict,
                                  origin_string: str = '') -> dict:
        """
        Restructuring method for antennas_iq data.

        Parameters
        ----------
        origin_string
            String of where file originated from for better error messages.
        data_dict
            a dict of timestamped records loaded from an hdf5 Borealis
            antennas_iq data file

        Returns
        -------
        new_data_dict
            A dictionary containing the data from data_dict
            reformatted to be stored entirely as arrays, or as
            one entry if the field does not change between records
        """

        try:
            new_data_dict = cls._iq_site_to_array(data_dict, 'antennas_iq')

            BorealisUtilities.check_arrays(
                origin_string, new_data_dict,
                borealis_formats.BorealisAntennasIq.array_single_element_types(
                ), borealis_formats.BorealisAntennasIq.array_array_dtypes(),
                borealis_formats.BorealisAntennasIq.unshared_fields)

        except Exception as e:
            raise borealis_exceptions.BorealisRestructureError('Error '
                                                               'restructuring'
                                                               ' antennas_iq '
                                                               'from site to'
                                                               ' array style:'
                                                               '{}'.format(e))\
                    from e

        return new_data_dict
Пример #2
0
    def borealis_site_to_array_dict(cls, origin_string: str,
                                    data_dict: OrderedDict,
                                    conversion_type: str) -> dict:
        """
        Converts a file from site style to restructured array style. Determines
        which base function to call based on conversion_type.

        Parameters
        ----------
        origin_string: str
            Filename or origin string for better error messages.
        data_dict: OrderedDict
            An opened rawacf hdf5 file in site record-by-record format
        conversion_type: str
            'bfiq', 'antennas_iq' or 'rawacf' to determine keys to convert

        Returns
        -------
        new_dict
            A dictionary containing the data from data_dict
            formatted to the array format
        """
        if conversion_type == 'bfiq':
            new_dict = cls.bfiq_site_to_array(data_dict, origin_string)
        elif conversion_type == 'rawacf':
            new_dict = cls.rawacf_site_to_array(data_dict, origin_string)
        elif conversion_type == 'antennas_iq':
            new_dict = cls.antennas_iq_site_to_array(data_dict, origin_string)
        else:
            raise borealis_exceptions.BorealisRestructureError(
                'File type {} '
                'not recognized'
                'as '
                'restructureable'
                ' from site to '
                'array style'
                ''.format(conversion_type))
        return new_dict
Пример #3
0
    def borealis_array_to_site_dict(cls, origin_string: str, data_dict: dict,
                                    conversion_type: str) -> OrderedDict:
        """
        Converts a file back to its original site format. Determines
        which base function to call based on conversion_type.

        Parameters
        ----------
        origin_string: str
            Filename or origin string for better error messages.
        data_dict: dict
            An opened rawacf hdf5 file in array format
        conversion_type: str
            'bfiq', 'antennas_iq' or 'rawacf' to determine keys to convert

        Returns
        -------
        new_dict
            A timestamped dictionary containing the data from data_dict
            formatted as the output from a site file.
        """
        if conversion_type == 'bfiq':
            new_dict = cls.bfiq_array_to_site(data_dict, origin_string)
        elif conversion_type == 'rawacf':
            new_dict = cls.rawacf_array_to_site(data_dict, origin_string)
        elif conversion_type == 'antennas_iq':
            new_dict = cls.antennas_iq_array_to_site(data_dict, origin_string)
        else:
            raise borealis_exceptions.BorealisRestructureError(
                'File type {} '
                'not recognized'
                ' as '
                'restructureable'
                ' from array to'
                ' site style'
                ''.format(conversion_type))
        return new_dict
Пример #4
0
    def antennas_iq_array_to_site(cls,
                                  data_dict: dict,
                                  origin_string: str = '') -> OrderedDict:
        """
        Converts a restructured array antennas_iq file back to the
        original site format.

        Parameters
        ----------
        origin_string
            String of where file originated from for better error messages.
        data_dict
            An opened antennas_iq hdf5 file in array format

        Returns
        -------
        timestamp_dict
            A timestamped dictionary containing the data from data_dict
            formatted as the output from a site file (as records, where
            keys are timestamp of first sequence in the record)
        """
        try:
            timestamp_dict = cls._iq_array_to_site(data_dict, 'antennas_iq')
            BorealisUtilities.check_records(
                origin_string, timestamp_dict,
                borealis_formats.BorealisAntennasIq.site_single_element_types(
                ), borealis_formats.BorealisAntennasIq.site_array_dtypes())

        except Exception as e:
            raise borealis_exceptions.BorealisRestructureError('Error '
                                                               'restructuring'
                                                               ' antennas_iq '
                                                               'from array to'
                                                               ' site style:'
                                                               '{}'.format(e))\
                    from e
        return timestamp_dict
Пример #5
0
    def rawacf_array_to_site(data_dict: dict,
                             origin_string: str = '') -> OrderedDict:
        """
        Converts a restructured array rawacf file back to the
        original site format.

        Parameters
        ----------
        data_dict
            An opened rawacf hdf5 file in array format
        origin_string
            String of where file originated from for better error messages.

        Returns
        -------
        timestamp_dict
            A timestamped dictionary containing the data from data_dict
            formatted as the output from a site file (as records, where
            keys are timestamp of first sequence in the record)
        """
        shared_fields = borealis_formats.BorealisRawacf.shared_fields
        unshared_fields = borealis_formats.BorealisRawacf.unshared_fields

        try:
            (num_records, max_num_beams, num_ranges, num_lags) = \
                data_dict["main_acfs"].shape
            # new correlation descriptors
            correlation_descriptors = np.array(
                ['num_beams', 'num_ranges', 'num_lags'], dtype=np.unicode_)
            # array only field
            max_num_sequences = max(data_dict["num_sequences"])

            timestamp_dict = OrderedDict()
            # get keys from first sequence timestamps
            for rec, seq_timestamp in enumerate(data_dict["sqn_timestamps"]):
                # format dictionary key in the same way it is done
                # in datawrite on site
                seq_datetime =\
                    datetime.datetime.utcfromtimestamp(seq_timestamp[0])
                epoch = datetime.datetime.utcfromtimestamp(0)
                key = str(int((seq_datetime - epoch).total_seconds() * 1000))

                timestamp_dict[key] = dict()
                for field in shared_fields:
                    timestamp_dict[key][field] = data_dict[field]
                # overwrite the correlation descriptors
                timestamp_dict[key]["correlation_descriptors"] =\
                    correlation_descriptors

                # Handle per record fields, copy all and deal with
                # dimensions issues after
                for field in unshared_fields:
                    timestamp_dict[key][field] = data_dict[field][rec]

                # Handle special cases - where dimensions may be
                # larger than necessary.
                num_beams = data_dict["num_beams"][rec]  # array only field
                if num_beams != max_num_beams:
                    timestamp_dict[key]["beam_nums"] =\
                        timestamp_dict[key]["beam_nums"][rec, :num_beams]
                    timestamp_dict[key]["beam_azms"] =\
                        timestamp_dict[key]["beam_azms"][rec, :num_beams]

                num_sequences = timestamp_dict[key]["num_sequences"]
                if num_sequences != max_num_sequences:
                    timestamp_dict[key]["sqn_timestamps"] =\
                        data_dict["sqn_timestamps"][rec, :num_sequences]
                    timestamp_dict[key]["noise_at_freq"] =\
                        data_dict["noise_at_freq"][rec, :num_sequences]

                dims = np.array([num_beams, num_ranges, num_lags],
                                dtype=np.uint32)
                main_acfs = np.copy(
                    data_dict["main_acfs"][rec, :dims[0], :dims[1], :dims[2]])
                intf_acfs = np.copy(
                    data_dict["intf_acfs"][rec, :dims[0], :dims[1], :dims[2]])
                xcfs = np.copy(
                    data_dict["xcfs"][rec, :dims[0], :dims[1], :dims[2]])

                timestamp_dict[key]["main_acfs"] = main_acfs.flatten()
                timestamp_dict[key]["intf_acfs"] = intf_acfs.flatten()
                timestamp_dict[key]["xcfs"] = xcfs.flatten()
                # site only field
                timestamp_dict[key]["correlation_dimensions"] = dims

            BorealisUtilities.check_records(
                origin_string, timestamp_dict,
                borealis_formats.BorealisRawacf.site_single_element_types(),
                borealis_formats.BorealisRawacf.site_array_dtypes())

        except Exception as e:
            raise borealis_exceptions.BorealisRestructureError('Error '
                                                               'restructuring'
                                                               ' rawacf from'
                                                               ' array to '
                                                               'site style:'
                                                               '{}'.format(e))\
                    from e
        return timestamp_dict
Пример #6
0
    def _iq_array_to_site(data_dict: dict, iq_filetype: str) -> OrderedDict:
        """
        Base function for converting both bfiq and antennas_iq back to
        original site format.

        Parameters
        ----------
        data_dict: dict
            An opened bfiq hdf5 file in array format
        iq_filetype: str
            'bfiq' or 'antennas_iq' to determine how to process

        Returns
        -------
        timestamp_dict
            A timestamped dictionary containing the data from data_dict
            formatted as the output from a site file (as records, where
            keys are timestamp of first sequence in the record)
        """

        timestamp_dict = OrderedDict()

        if iq_filetype == 'bfiq':
            # dims are num_antenna_arrays, num_sequences, num_beams, num_samps
            shared_fields = borealis_formats.BorealisBfiq.shared_fields
            unshared_fields = borealis_formats.BorealisBfiq.unshared_fields
            num_records, num_antenna_arrays, max_num_sequences, \
                max_num_beams, num_samps = data_dict["data"].shape
            # new data descriptors
            data_descriptors = np.array([
                "num_antenna_arrays", "num_sequences", "num_beams", "num_samps"
            ],
                                        dtype=np.unicode_)
        elif iq_filetype == 'antennas_iq':
            # dims are num_antennas, num_sequences, num_samps
            shared_fields = borealis_formats.BorealisAntennasIq.shared_fields
            unshared_fields = \
                borealis_formats.BorealisAntennasIq.unshared_fields
            num_records, num_antennas, max_num_sequences, num_samps = \
                data_dict["data"].shape
            max_num_beams = max(data_dict["num_beams"])  # array only field
            # new data descriptors
            data_descriptors = np.array(
                ["num_antennas", "num_sequences", "num_samps"],
                dtype=np.unicode_)
        else:
            raise borealis_exceptions.BorealisRestructureError(
                "Unrecognized"
                " filetype in"
                " _iq_site_to_array")

        # get keys from first sequence timestamps
        for rec, seq_timestamp in enumerate(data_dict["sqn_timestamps"]):
            # format dictionary key in the same way it is done
            # in datawrite on site
            seq_datetime = datetime.datetime.utcfromtimestamp(seq_timestamp[0])
            epoch = datetime.datetime.utcfromtimestamp(0)
            key = str(int((seq_datetime - epoch).total_seconds() * 1000))

            timestamp_dict[key] = dict()
            # copy shared_fields
            for field in shared_fields:
                timestamp_dict[key][field] = data_dict[field]

            # data_descriptors needs to be overwritten
            timestamp_dict[key]["data_descriptors"] = data_descriptors

            # Handle per record fields
            for field in unshared_fields:
                timestamp_dict[key][field] = data_dict[field][rec]

            # Handle special cases - where dimensions may be
            # larger than necessary.
            num_beams = data_dict["num_beams"][rec]  # array only field
            if num_beams != max_num_beams:
                timestamp_dict[key]["beam_nums"] =\
                    timestamp_dict[key]["beam_nums"][rec, :num_beams]
                timestamp_dict[key]["beam_azms"] =\
                    timestamp_dict[key]["beam_azms"][rec, :num_beams]

            num_sequences = timestamp_dict[key]["num_sequences"]
            if num_sequences != max_num_sequences:
                timestamp_dict[key]["sqn_timestamps"] =\
                    data_dict["sqn_timestamps"][rec, :num_sequences]
                timestamp_dict[key]["noise_at_freq"] =\
                    data_dict["noise_at_freq"][rec, :num_sequences]

            # have to take correct dimensions to remove appended zeros if
            # num_sequences or
            # num_beams are less than their max.
            if iq_filetype == 'bfiq':
                dims = np.array(
                    [num_antenna_arrays, num_sequences, num_beams, num_samps],
                    dtype=np.uint32)
                new_data = data_dict["data"][
                    rec, :dims[0], :dims[1], :dims[2], :dims[3]]
            elif iq_filetype == 'antennas_iq':
                dims = np.array([num_antennas, num_sequences, num_samps],
                                dtype=np.uint32)
                new_data = data_dict["data"][rec, :dims[0], :dims[1], :dims[2]]

            timestamp_dict[key]["data_dimensions"] = dims  # site only field
            timestamp_dict[key]["data"] = new_data.flatten()

        return timestamp_dict
Пример #7
0
    def rawacf_site_to_array(cls,
                             data_dict: OrderedDict,
                             origin_string: str = '') -> dict:
        """
        Restructuring method for rawacf data.

        Parameters
        ----------
        data_dict
            a dict of timestamped records loaded from an hdf5 Borealis rawacf
            data file
        origin_string
            String of where file originated from for better error messages.

        Returns
        -------
        new_data_dict
            A dictionary containing the data from data_dict
            reformatted to be stored entirely as arrays, or as
            one entry if the field does not change between records
        """
        try:
            new_data_dict = dict()
            num_records = len(data_dict)
            max_seqs = cls.find_max_sequences(data_dict)
            max_beams = cls.find_max_beams(data_dict)

            # write shared fields to dictionary
            first_key = list(data_dict.keys())[0]
            for field in borealis_formats.BorealisRawacf.shared_fields:
                new_data_dict[field] = data_dict[first_key][field]

            # handle unshared data fields
            first_dims = data_dict[first_key]["correlation_dimensions"]
            # dims are num_beams, num_ranges, num_lags
            num_ranges = first_dims[1]  # these don't change
            num_lags = first_dims[2]

            correlation_descriptors = np.array(
                ['num_records', 'max_num_beams', 'num_ranges', 'num_lags'],
                dtype=np.unicode_)
            correlation_shape = (num_records, max_beams, num_ranges, num_lags)

            noise_buffer_offset = max_seqs
            noise_buffer = np.zeros(num_records * max_seqs)
            noise_shape = (num_records, max_seqs)

            main_array = np.empty(correlation_shape, dtype=np.complex64)
            intf_array = np.empty(correlation_shape, dtype=np.complex64)
            xcfs_array = np.empty(correlation_shape, dtype=np.complex64)

            sqn_ts_array = np.empty((num_records, max_seqs), dtype=np.float64)
            sqn_num_array = np.empty((num_records), dtype=np.int64)
            int_time_array = np.empty((num_records), dtype=np.float32)
            scan_start_array = np.empty((num_records), dtype=np.bool_)
            num_slices_array = np.empty((num_records), dtype=np.int64)

            beam_nums_array = np.zeros((num_records, max_beams),
                                       dtype=np.uint32)
            beam_azms_array = np.zeros((num_records, max_beams),
                                       dtype=np.float64)
            num_beams_array = np.empty((num_records), dtype=np.uint32)

            for rec_idx, k in enumerate(data_dict.keys()):
                sqn_num_array[rec_idx] = data_dict[k]["num_sequences"]
                int_time_array[rec_idx] = data_dict[k]["int_time"]
                scan_start_array[rec_idx] = data_dict[k]["scan_start_marker"]

                scan_start_array[rec_idx] = data_dict[k]["scan_start_marker"]
                num_slices_array[rec_idx] = data_dict[k]["num_slices"]

                beam_nums_buffer = data_dict[k]["beam_nums"]
                beam_azms_buffer = data_dict[k]["beam_azms"]
                # the beam_nums, beam_azms at a record may have appended zeros,
                # which is why a num_beams array is necessary.
                beam_nums_array[rec_idx][0:len(beam_nums_buffer)] =\
                    beam_nums_buffer
                beam_azms_array[rec_idx][0:len(beam_azms_buffer)] =\
                    beam_azms_buffer
                num_beams = num_beams_array[rec_idx] = len(beam_nums_buffer)

                # some records have fewer than the specified
                # number of sequences get around this by zero
                # padding to the recorded number
                sqn_timestamps = data_dict[k]["sqn_timestamps"]
                while len(sqn_timestamps) < max_seqs:
                    sqn_timestamps = np.append(sqn_timestamps, 0)
                sqn_ts_array[rec_idx] = sqn_timestamps

                rec_noise = data_dict[k]["noise_at_freq"]
                noise_pos = rec_idx * noise_buffer_offset
                noise_end = noise_pos + data_dict[k]["num_sequences"]
                noise_buffer[noise_pos:noise_end] = rec_noise

                record_dims = data_dict[k]['correlation_dimensions']
                # anything greater than the number_of_beams will
                # remain as zeros
                main_array[rec_idx][:num_beams] =\
                    data_dict[k]["main_acfs"].reshape(record_dims)
                intf_array[rec_idx][:num_beams] =\
                    data_dict[k]["intf_acfs"].reshape(record_dims)
                xcfs_array[rec_idx][:num_beams] =\
                    data_dict[k]["xcfs"].reshape(record_dims)

            # write leftover metadata and data
            new_data_dict["num_sequences"] = sqn_num_array
            new_data_dict["int_time"] = int_time_array
            new_data_dict["scan_start_marker"] = scan_start_array
            new_data_dict["num_slices"] = num_slices_array
            new_data_dict["beam_nums"] = beam_nums_array
            new_data_dict["beam_azms"] = beam_azms_array
            new_data_dict["num_beams"] = num_beams_array
            new_data_dict["sqn_timestamps"] = sqn_ts_array
            new_data_dict["noise_at_freq"] = noise_buffer.reshape(noise_shape)

            new_data_dict["correlation_descriptors"] = correlation_descriptors
            new_data_dict["main_acfs"] = main_array
            new_data_dict["intf_acfs"] = intf_array
            new_data_dict["xcfs"] = xcfs_array

            BorealisUtilities.check_arrays(
                origin_string, new_data_dict,
                borealis_formats.BorealisRawacf.array_single_element_types(),
                borealis_formats.BorealisRawacf.array_array_dtypes(),
                borealis_formats.BorealisRawacf.unshared_fields)

        except Exception as e:
            raise borealis_exceptions.BorealisRestructureError('Error '
                                                               'restructuring'
                                                               ' rawacf from'
                                                               ' site to array'
                                                               ' style:'
                                                               '{}'.format(e))\
                    from e
        return new_data_dict
Пример #8
0
    def _iq_site_to_array(cls, data_dict: OrderedDict,
                          iq_filetype: str) -> dict:
        """
        Base function for converting both bfiq and antennas_iq data to
        restructured array format.

        Parameters
        ----------
        data_dict: OrderedDict
            a dict of timestamped records loaded from an hdf5 Borealis bfiq
            or antennas_iq data file
        iq_filetype: str
            'bfiq' or 'antennas_iq' for more information on how to process.

        Returns
        -------
        new_data_dict
            A dictionary containing the data from data_dict
            reformatted to be stored entirely as arrays, or as
            one entry if the field does not change between records
        """
        new_data_dict = dict()
        num_records = len(data_dict)

        # write shared fields to dictionary
        first_key = list(data_dict.keys())[0]

        # find maximum number of sequences
        max_seqs = cls.find_max_sequences(data_dict)
        max_beams = cls.find_max_beams(data_dict)
        dims = data_dict[first_key]["data_dimensions"]

        if iq_filetype == 'antennas_iq':
            # dims are num_antennas, num_sequences, num_samps
            for field in borealis_formats.BorealisAntennasIq.shared_fields:
                new_data_dict[field] = data_dict[first_key][field]

            num_antennas = dims[0]
            num_samps = dims[2]
            data_buffer_offset = num_antennas * num_samps * max_seqs
            data_buffer = np.zeros(num_records * data_buffer_offset,
                                   dtype=np.complex64)

            data_descriptors = np.array([
                "num_records", "num_antennas", "max_num_sequences", "num_samps"
            ],
                                        dtype=np.unicode_)
            data_shape = (num_records, num_antennas, max_seqs, num_samps)

        elif iq_filetype == 'bfiq':
            # dims are num_antenna_arrays, num_sequences, num_beams, num_samps
            for field in borealis_formats.BorealisBfiq.shared_fields:
                new_data_dict[field] = data_dict[first_key][field]
            num_arrays = dims[0]
            num_samps = dims[3]

            data_buffer_offset = num_arrays * max_beams * num_samps * max_seqs
            data_buffer = np.zeros(num_records * data_buffer_offset,
                                   dtype=np.complex64)
            data_descriptors = np.array([
                "num_records", "num_antenna_arrays", "max_num_sequences",
                "max_num_beams", "num_samps"
            ],
                                        dtype=np.unicode_)
            data_shape = (num_records, num_arrays, max_seqs, max_beams,
                          num_samps)

        else:  # Unrecognized
            raise borealis_exceptions.BorealisRestructureError(
                "Unrecognized"
                " filetype in"
                " _iq_site_to_array")

        sqn_buffer_offset = max_seqs
        sqn_ts_buffer = np.zeros(num_records * max_seqs)
        sqn_shape = (num_records, max_seqs)

        noise_buffer_offset = max_seqs
        noise_buffer = np.zeros(num_records * max_seqs)
        noise_shape = (num_records, max_seqs)

        sqn_num_array = np.empty((num_records), dtype=np.int64)
        int_time_array = np.empty((num_records), dtype=np.float32)
        scan_start_array = np.empty((num_records), dtype=np.bool_)
        num_slices_array = np.empty((num_records), dtype=np.int64)

        beam_nums_array = np.zeros((num_records, max_beams), dtype=np.uint32)
        beam_azms_array = np.zeros((num_records, max_beams), dtype=np.float64)
        num_beams_array = np.empty((num_records), dtype=np.uint32)

        for rec_idx, k in enumerate(data_dict.keys()):
            # handle unshared fields
            sqn_num_array[rec_idx] = data_dict[k]["num_sequences"]
            int_time_array[rec_idx] = data_dict[k]["int_time"]
            scan_start_array[rec_idx] = data_dict[k]["scan_start_marker"]
            num_slices_array[rec_idx] = data_dict[k]["num_slices"]

            beam_nums_buffer = data_dict[k]["beam_nums"]
            beam_azms_buffer = data_dict[k]["beam_azms"]
            # the beam_nums, beam_azms at a record may have appended zeros,
            # which is why a num_beams array is necessary.
            beam_nums_array[rec_idx][0:len(beam_nums_buffer)] =\
                beam_nums_buffer
            beam_azms_array[rec_idx][0:len(beam_azms_buffer)] =\
                beam_azms_buffer
            num_beams_array[rec_idx] = len(beam_nums_buffer)

            # insert data into buffer
            record_buffer = data_dict[k]["data"]
            data_pos = rec_idx * data_buffer_offset
            data_end = data_pos + len(record_buffer)
            data_buffer[data_pos:data_end] = record_buffer

            # insert sequence timestamps into buffer
            rec_sqn_ts = data_dict[k]["sqn_timestamps"]
            sqn_pos = rec_idx * sqn_buffer_offset
            sqn_end = sqn_pos + data_dict[k]["num_sequences"]
            sqn_ts_buffer[sqn_pos:sqn_end] = rec_sqn_ts

            rec_noise = data_dict[k]["noise_at_freq"]
            noise_pos = rec_idx * noise_buffer_offset
            noise_end = noise_pos + data_dict[k]["num_sequences"]
            noise_buffer[noise_pos:noise_end] = rec_noise

        # write leftover metadata and data
        new_data_dict["num_sequences"] = sqn_num_array
        new_data_dict["int_time"] = int_time_array
        new_data_dict["scan_start_marker"] = scan_start_array
        new_data_dict["num_slices"] = num_slices_array
        new_data_dict["beam_nums"] = beam_nums_array
        new_data_dict["beam_azms"] = beam_azms_array
        new_data_dict["num_beams"] = num_beams_array

        new_data_dict["data"] = data_buffer.reshape(data_shape)
        new_data_dict["sqn_timestamps"] = sqn_ts_buffer.reshape(sqn_shape)
        new_data_dict["noise_at_freq"] = noise_buffer.reshape(noise_shape)

        new_data_dict["data_descriptors"] = data_descriptors

        return new_data_dict