Пример #1
0
    def test_host_on_agent(self):
        d = Distribution({'a1': ['v1', 'v2'], 'a2': ['v3']})
        d.host_on_agent('a1', ['v4'])

        self.assertEqual(d.agent_for('v4'), 'a1')
        self.assertEqual(d.agent_for('v1'), 'a1')

        self.assertIn('v4', d.computations_hosted('a1'))
        self.assertIn('v1', d.computations_hosted('a1'))
        self.assertIn('v2', d.computations_hosted('a1'))
Пример #2
0
    def test_dist(self):

        d = Distribution({'a1': ['v1'], 'a2': ['v2']})

        self.assertEqual(len(d.computations_hosted('a1')), 1)
        self.assertEqual(len(d.computations_hosted('a2')), 1)
        self.assertIn('v1', d.computations_hosted('a1'))
        self.assertIn('v2', d.computations_hosted('a2'))

        self.assertEqual(d.agent_for('v1'), 'a1')
        self.assertEqual(d.agent_for('v2'), 'a2')
Пример #3
0
def fg_secp_ilp(
    cg: ComputationsFactorGraph,
    agents: List[AgentDef],
    already_assigned: Distribution,
    computation_memory: Callable[[ComputationNode], float],
    communication_load: Callable[[ComputationNode, str], float],
) -> Distribution:

    variables = [n for n in cg.nodes if n.type == "VariableComputation"]
    factors = [n for n in cg.nodes if n.type == "FactorComputation"]

    agents = list(agents)
    agents_names = [a.name for a in agents]

    # Only keep computations for which we actually need to find an agent.
    vars_to_host = [
        v.name for v in variables
        if not already_assigned.has_computation(v.name)
    ]
    facs_to_host = [
        f.name for f in factors if not already_assigned.has_computation(f.name)
    ]

    # x_i^k : binary variable indicating if var x_i is hosted on agent a_k.
    xs = _build_xs_binvar(vars_to_host, agents_names)
    # f_j^k : binary variable indicating if factor f_j is hosted on agent a_k.
    fs = _build_fs_binvar(facs_to_host, agents_names)
    # alpha_ijk : binary variable indicating if  x_i and f_j are both on a_k.
    alphas = _build_alphaijk_binvars(cg, agents_names)
    logger.debug(f"alpha_ijk {alphas}")

    # LP problem with objective function (total communication cost).
    pb = LpProblem("distribution", LpMinimize)
    pb += (
        secp_dist_objective_function(cg, communication_load, alphas,
                                     agents_names),
        "Communication costs",
    )

    # Constraints.
    # All variable computations must be hosted:
    for i in vars_to_host:
        pb += (
            lpSum([xs[(i, k)] for k in agents_names]) == 1,
            "var {} is hosted".format(i),
        )

    # All factor computations must be hosted:
    for j in facs_to_host:
        pb += (
            lpSum([fs[(j, k)] for k in agents_names]) == 1,
            "factor {} is hosted".format(j),
        )

    # Each agent must host at least one computation:
    # We only need this constraints for agents that do not already host a
    # computation:
    empty_agents = [
        a for a in agents_names if not already_assigned.computations_hosted(a)
    ]
    for k in empty_agents:
        pb += (
            lpSum([xs[(i, k)] for i in vars_to_host]) +
            lpSum([fs[(j, k)] for j in facs_to_host]) >= 1,
            "atleastone {}".format(k),
        )

    # Memory capacity constraint for agents
    for a in agents:
        # Decrease capacity for already hosted computations
        capacity = a.capacity - sum([
            secp_computation_memory_in_cg(c, cg, computation_memory)
            for c in already_assigned.computations_hosted(a.name)
        ])

        pb += (
            lpSum([
                secp_computation_memory_in_cg(i, cg, computation_memory) * xs[
                    (i, a.name)] for i in vars_to_host
            ]) + lpSum([
                secp_computation_memory_in_cg(j, cg, computation_memory) * fs[
                    (j, a.name)] for j in facs_to_host
            ]) <= capacity,
            "memory {}".format(a.name),
        )

    # Linearization constraints for alpha_ijk.
    for link in cg.links:
        i, j = link.variable_node, link.factor_node
        for k in agents_names:

            if i in vars_to_host and j in facs_to_host:
                pb += alphas[((i, j), k)] <= xs[(i, k)], "lin1 {}{}{}".format(
                    i, j, k)
                pb += alphas[((i, j), k)] <= fs[(j, k)], "lin2 {}{}{}".format(
                    i, j, k)
                pb += (
                    alphas[((i, j), k)] >= xs[(i, k)] + fs[(j, k)] - 1,
                    "lin3 {}{}{}".format(i, j, k),
                )

            elif i in vars_to_host and j not in facs_to_host:
                # Var is free, factor is already hosted
                if already_assigned.agent_for(j) == k:
                    pb += alphas[((i, j), k)] == xs[(i, k)]
                else:
                    pb += alphas[((i, j), k)] == 0

            elif i not in vars_to_host and j in facs_to_host:
                # if i is not in vars_vars_to_host, it means that it's a
                # computation that is already hosted (from  hints)
                if already_assigned.agent_for(i) == k:
                    pb += alphas[((i, j), k)] == fs[(j, k)]
                else:
                    pb += alphas[((i, j), k)] == 0

            else:
                # i and j are both alredy hosted
                if (already_assigned.agent_for(i) == k
                        and already_assigned.agent_for(j) == k):
                    pb += alphas[((i, j), k)] == 1
                else:
                    pb += alphas[((i, j), k)] == 0

    # Now solve our LP
    # status = pb.solve(GLPK_CMD())
    # status = pb.solve(GLPK_CMD(mip=1))
    # status = pb.solve(GLPK_CMD(mip=0, keepFiles=1,
    #                                options=['--simplex', '--interior']))
    status = pb.solve(GLPK_CMD(keepFiles=0, msg=False, options=["--pcost"]))

    if status != LpStatusOptimal:
        raise ImpossibleDistributionException("No possible optimal"
                                              " distribution ")
    else:
        logger.debug("GLPK cost : %s", pulp.value(pb.objective))

        comp_dist = already_assigned
        for k in agents_names:

            agt_vars = [
                i for i, ka in xs if ka == k and pulp.value(xs[(i, ka)]) == 1
            ]
            comp_dist.host_on_agent(k, agt_vars)

            agt_rels = [
                j for j, ka in fs if ka == k and pulp.value(fs[(j, ka)]) == 1
            ]
            comp_dist.host_on_agent(k, agt_rels)
        return comp_dist
Пример #4
0
def cg_secp_ilp(
        cg: ComputationConstraintsHyperGraph,
        agents: List[AgentDef],
        already_assigned: Distribution,
        computation_memory: Callable[[ComputationNode], float],
        communication_load: Callable[[ComputationNode, str], float],
        timeout=600,  # Max 10 min
) -> Distribution:
    start_t = time.time()

    agents = list(agents)
    agents_names = [a.name for a in agents]

    # Only keep computations for which we actually need to find an agent.
    comps_to_host = [
        c for c in cg.node_names() if not already_assigned.has_computation(c)
    ]

    # x_i^k : binary variable indicating if var x_i is hosted on agent a_k.
    xs = _build_cs_binvar(comps_to_host, agents_names)
    # alpha_ijk : binary variable indicating if  x_i and f_j are both on a_k.
    alphas = _build_alphaijk_binvars(cg, agents_names)
    logger.debug(f"alpha_ijk {alphas}")

    # LP problem with objective function (total communication cost).
    pb = LpProblem("distribution", LpMinimize)
    pb += (
        _objective_function(cg, communication_load, alphas, agents_names),
        "Communication costs",
    )

    # Constraints.
    # All variable computations must be hosted:
    for i in comps_to_host:
        pb += (
            lpSum([xs[(i, k)] for k in agents_names]) == 1,
            "var {} is hosted".format(i),
        )
    # Each agent must host at least one computation:
    # We only need this constraints for agents that do not already host a
    # computation:
    empty_agents = [
        a for a in agents_names if not already_assigned.computations_hosted(a)
    ]
    for k in empty_agents:
        pb += (
            lpSum([xs[(i, k)] for i in comps_to_host]) >= 1,
            "atleastone {}".format(k),
        )

    # Memory capacity constraint for agents
    for a in agents:
        # Decrease capacity for already hosted computations
        capacity = a.capacity - sum([
            secp_computation_memory_in_cg(c, cg, computation_memory)
            for c in already_assigned.computations_hosted(a.name)
        ])

        pb += (
            lpSum([
                secp_computation_memory_in_cg(i, cg, computation_memory) *
                xs[(i, a.name)] for i in comps_to_host
            ]) <= capacity,
            "memory {}".format(a.name),
        )

    # Linearization constraints for alpha_ijk.
    for (i, j), k in alphas:

        if i in comps_to_host and j in comps_to_host:
            pb += alphas[((i, j), k)] <= xs[(i, k)], "lin1 {}{}{}".format(
                i, j, k)
            pb += alphas[((i, j), k)] <= xs[(j, k)], "lin2 {}{}{}".format(
                i, j, k)
            pb += (
                alphas[((i, j), k)] >= xs[(i, k)] + xs[(j, k)] - 1,
                "lin3 {}{}{}".format(i, j, k),
            )

        elif i in comps_to_host and j not in comps_to_host:
            # Var is free, factor is already hosted
            if already_assigned.agent_for(j) == k:
                pb += alphas[((i, j), k)] == xs[(i, k)]
            else:
                pb += alphas[((i, j), k)] == 0

        elif i not in comps_to_host and j in comps_to_host:
            # if i is not in vars_vars_to_host, it means that it's a
            # computation that is already hosted (from  hints)
            if already_assigned.agent_for(i) == k:
                pb += alphas[((i, j), k)] == xs[(j, k)]
            else:
                pb += alphas[((i, j), k)] == 0

        else:
            # i and j are both alredy hosted
            if (already_assigned.agent_for(i) == k
                    and already_assigned.agent_for(j) == k):
                pb += alphas[((i, j), k)] == 1
            else:
                pb += alphas[((i, j), k)] == 0

    # the timeout for the solver must be monierd by the time spent to build the pb:
    remaining_time = round(timeout - (time.time() - start_t)) - 2

    # Now solve our LP
    status = pb.solve(
        GLPK_CMD(keepFiles=0,
                 msg=False,
                 options=["--pcost", "--tmlim",
                          str(remaining_time)]))

    if status != LpStatusOptimal:
        raise ImpossibleDistributionException("No possible optimal"
                                              " distribution ")
    else:
        logger.debug("GLPK cost : %s", pulp.value(pb.objective))

        comp_dist = already_assigned
        for k in agents_names:

            agt_vars = [
                i for i, ka in xs if ka == k and pulp.value(xs[(i, ka)]) == 1
            ]
            comp_dist.host_on_agent(k, agt_vars)

        return comp_dist