annotations = pdm.Annotations( name='annotations', type='850k', exclude='none', select_dict={} ) observables = pdm.Observables( name='observables_part(v1)', types={'COVID': ['no', 'before'], 'Sample_Chronology': [0, 1]} ) cells = pdm.Cells( name='cell_counts_part(v1)', types='any' ) target = 'Group' attributes = pdm.Attributes( target=target, observables=observables, cells=cells ) data_params = { 'part': 'v1', 'config': '0.01_0.10_0.10', 'norm': 'fun' }
import pydnameth as pdm from scripts.develop.routines import * data = pdm.Data(path='', base='GSE87571') annotations = pdm.Annotations(name='annotations', type='450k', exclude='bad_cpgs', select_dict={'CHR': ['-X', '-Y']}) cells = pdm.Cells(name='cells_horvath_calculator', types='any') target = get_target(data.base) data_params = get_data_params(data.base) data_params['cells'] = ['CD8T', 'CD4T', 'NK', 'Bcell', 'Gran'] if data.base == 'GSE55763': observables_list = [ { 'gender': 'any', 'is_duplicate': '0', 'age': (35, 100) }, ] else: observables_list = [ { 'gender': 'any' }, ]
import pydnameth as pdm from scripts.develop.routines import * data = pdm.Data(path='', base='unn_epic') annotations = pdm.Annotations(name='annotations', type='850k', exclude='bad_cpgs_from_ChAMP', select_dict={'CHR': ['-X', '-Y']}) observables = pdm.Observables(name='observables_part(final)', types={}) cells = pdm.Cells(name='cell_counts', types='any') target = 'Sample_Group' attributes = pdm.Attributes(target=target, observables=observables, cells=cells) #data_params = get_data_params(data.base) data_params = { 'norm': 'fun', 'part': 'final', } pdm.betas_table_pbc( data=data, annotations=annotations, attributes=attributes, data_params=data_params, )
annotations = pdm.Annotations( name='annotations', type='850k', exclude='bad_cpgs_from_ChAMP', select_dict={ 'CHR': ['-X', '-Y'] } ) observables = pdm.Observables( name='observables', types={} ) cells = pdm.Cells( name='', types='any' ) target = get_target(data.base) #observables_list = get_observables_list(data.base) observables_list = [ {'Sample_Group': 'C'}, {'Sample_Group': 'T'} ] data_params = get_data_params(data.base) attributes = pdm.Attributes( target=target, observables=observables, cells=cells )
cell_name = 'cells_horvath_calculator' data = pdm.Data(path='', base=data_set) annotations = pdm.Annotations(name='annotations', exclude='bad_cpgs', cross_reactive='any', snp='any', chr='NS', gene_region='any', geo='any', probe_class='any') observables = pdm.Observables(name='observables', types={}) cells = pdm.Cells(name=cell_name, types=cell_types) attributes = pdm.Attributes(target='age', observables=observables, cells=cells) if data.base == 'GSE55763': observables_list = [{ 'gender': 'F', 'is_duplicate': '0', 'age': (35, 100) }, { 'gender': 'M', 'is_duplicate': '0', 'age': (35, 100) }]
) annotations_unn_epic = pdm.Annotations( name='annotations', type='850k', exclude='bad_cpgs_from_ChAMP', select_dict={ 'CHR': ['-X', '-Y'] } ) target_unn_epic = 'Age' observables_unn_epic = pdm.Observables( name='observables', types={} ) cells_unn_epic = pdm.Cells( name='cell_counts_horvath_filtered_normalized', types='any' ) attributes_unn_epic = pdm.Attributes( target=target_unn_epic, observables=observables_unn_epic, cells=cells_unn_epic ) data_params_unn_epic = get_data_params(data_unn_epic.base) # data_params_unn_epic = { # 'norm': 'BMIQ', # 'part': 'raw', # } config_unn = pdm.load_beta_config( data_unn_epic, annotations_unn_epic, attributes_unn_epic,
import pydnameth as pdm from scripts.develop.routines import * data = pdm.Data(path='', base='unn_epic') annotations = pdm.Annotations(name='annotations', type='850k', exclude='none', select_dict={'CHR': ['-X', '-Y']}) observables = pdm.Observables(name='observables_part(wo_noIntensity_detP)', types={}) cells = pdm.Cells(name='cell_counts_part(wo_noIntensity_detP)', types='any') target = 'Sample_Group' attributes = pdm.Attributes(target=target, observables=observables, cells=cells) data_params = { 'norm': 'fun', 'part': 'wo_noIntensity_detP', } method_params = { 'formula': 'cpg ~ Sample_Group + Sex*Age + Bcell + CD4T + CD8T + Neu + NK', } pdm.betas_table_formula_new( data=data,