Пример #1
0
    def test_thigh_torque_return_type(self):
        """Verify the signature of ChooseThighTorque"""
        from hopper_2d import Hopper2dController

        builder = DiagramBuilder()
        plant = builder.AddSystem(MultibodyPlant(0.0005))
        parser = Parser(plant)
        parser.AddModelFromFile("raibert_hopper_2d.sdf")
        plant.WeldFrames(plant.world_frame(), plant.GetFrameByName("ground"))
        plant.Finalize()
        controller = Hopper2dController(plant, desired_lateral_velocity=0.0)

        x0 = np.zeros(10)
        x0[1] = 4.  # in air
        x0[4] = 0.5  # feasible leg length
        x0[5] = 0.1  # initial speed

        torquedes = controller.ChooseThighTorque(x0)
        self.assertIsInstance(torquedes, float,
            "ChooseThighTorque returned a type other than "\
            "float for X0 = %s, desired_lateral_velocity = %f" %
                (np.array_str(x0), controller.desired_lateral_velocity))

        # Try from another desired velocity
        controller.desired_lateral_velocity = -1.0
        torquedes = controller.ChooseThighTorque(x0)
        self.assertIsInstance(torquedes, float,
            "ChooseThighTorque returned a type other than "\
            "float for X0 = %s, desired_lateral_velocity = %f" %
                (np.array_str(x0), controller.desired_lateral_velocity))
Пример #2
0
def main():
    builder = DiagramBuilder()
    plant, scene_graph = AddMultibodyPlantSceneGraph(builder, 1e-3)

    body = add_body(plant, "welded_body")
    add_geometry(plant, body)
    plant.WeldFrames(plant.world_frame(), body.body_frame())

    body = add_body(plant, "floating_body")
    add_geometry(plant, body)
    plant.SetDefaultFreeBodyPose(body, RigidTransform([1., 0, 1.]))

    plant.Finalize()
    ConnectDrakeVisualizer(builder, scene_graph)
    diagram = builder.Build()
    simulator = Simulator(diagram)

    context = simulator.get_context()
    # plant.SetFreeBodyPose(context, body, X_WB)
    # plant.SetFreeBodySpatialVelocity(body, V_WB, context)

    # Should look at, show 40sec to 50sec.
    # TODO(eric.cousineau): Without reset stats, it freezes? :(
    # simulator.AdvanceTo(40.)
    simulator.set_target_realtime_rate(100.)
    # simulator.ResetStatistics()
    dt = 0.1
    while context.get_time() < 240.:
        simulator.AdvanceTo(context.get_time() + dt)
def runPendulumExample(args):
    builder = DiagramBuilder()
    plant, scene_graph = AddMultibodyPlantSceneGraph(builder)
    parser = Parser(plant)
    parser.AddModelFromFile(FindResource("pendulum/pendulum.urdf"))
    plant.Finalize()

    pose_bundle_output_port = scene_graph.get_pose_bundle_output_port()
    Tview = np.array([[1., 0., 0., 0.], [0., 0., 1., 0.], [0., 0., 0., 1.]],
                     dtype=np.float64)
    visualizer = builder.AddSystem(
        PlanarSceneGraphVisualizer(scene_graph,
                                   Tview=Tview,
                                   xlim=[-1.2, 1.2],
                                   ylim=[-1.2, 1.2]))
    builder.Connect(pose_bundle_output_port, visualizer.get_input_port(0))

    diagram = builder.Build()
    simulator = Simulator(diagram)
    simulator.Initialize()
    simulator.set_target_realtime_rate(1.0)

    # Fix the input port to zero.
    plant_context = diagram.GetMutableSubsystemContext(
        plant, simulator.get_mutable_context())
    plant_context.FixInputPort(plant.get_actuation_input_port().get_index(),
                               np.zeros(plant.num_actuators()))
    plant_context.SetContinuousState([0.5, 0.1])
    simulator.StepTo(args.duration)
Пример #4
0
def RunSimulation(quadrotor_plant,
                  control_law,
                  x0=np.random.random((8, 1)),
                  duration=30,
                  control_period=0.0333,
                  print_period=1.0,
                  simulation_period=0.0333):

    quadrotor_controller = QuadrotorController(control_law,
                                               control_period=control_period,
                                               print_period=print_period)

    # Create a simple block diagram containing the plant in feedback
    # with the controller.
    builder = DiagramBuilder()
    # The last pendulum plant we made is now owned by a deleted
    # system, so easiest path is for us to make a new one.
    plant = builder.AddSystem(
        QuadrotorPendulum(mb=quadrotor_plant.mb,
                          lb=quadrotor_plant.lb,
                          m1=quadrotor_plant.m1,
                          l1=quadrotor_plant.l1,
                          g=quadrotor_plant.g,
                          input_max=quadrotor_plant.input_max))

    controller = builder.AddSystem(quadrotor_controller)
    builder.Connect(plant.get_output_port(0), controller.get_input_port(0))
    builder.Connect(controller.get_output_port(0), plant.get_input_port(0))

    # Create a logger to capture the simulation of our plant
    input_log = builder.AddSystem(SignalLogger(2))
    input_log._DeclarePeriodicPublish(control_period, 0.0)

    builder.Connect(controller.get_output_port(0), input_log.get_input_port(0))

    state_log = builder.AddSystem(SignalLogger(8))
    state_log._DeclarePeriodicPublish(control_period, 0.0)

    builder.Connect(plant.get_output_port(0), state_log.get_input_port(0))

    diagram = builder.Build()

    # Set the initial conditions for the simulation.
    context = diagram.CreateDefaultContext()
    state = context.get_mutable_continuous_state_vector()
    state.SetFromVector(x0)

    # Create the simulator.
    simulator = Simulator(diagram, context)
    simulator.Initialize()
    simulator.set_publish_every_time_step(True)

    simulator.get_integrator().set_fixed_step_mode(True)
    simulator.get_integrator().set_maximum_step_size(control_period)

    # Simulate for the requested duration.
    simulator.StepTo(duration)

    return input_log, state_log
Пример #5
0
def get_basic_manip_station():
    """Used for IK"""
    builder = DiagramBuilder()
    station = builder.AddSystem(ManipulationStation())
    station.SetupClutterClearingStation()
    station.Finalize()
    diagram = builder.Build()
    context = diagram.CreateDefaultContext()
    plant = station.get_multibody_plant()

    return plant, context
Пример #6
0
def setup_manipulation_station(T_world_objectInitial, zmq_url, T_world_targetBin, manipuland="foam", include_bin=True, include_hoop=False):
    builder = DiagramBuilder()
    station = builder.AddSystem(ManipulationStation(time_step=1e-3))
    station.SetupClutterClearingStation()
    if manipuland is "foam":
        station.AddManipulandFromFile(
            "drake/examples/manipulation_station/models/061_foam_brick.sdf",
            T_world_objectInitial)
    elif manipuland is "ball":
        station.AddManipulandFromFile(
            "drake/examples/manipulation_station/models/sphere.sdf",
            T_world_objectInitial)
    elif manipuland is "bball":
        station.AddManipulandFromFile(
            "drake/../../../../../../manipulation/sdfs/bball.sdf", # this is some path hackery
            T_world_objectInitial)
    elif manipuland is "rod":
        station.AddManipulandFromFile(
            "drake/examples/manipulation_station/models/rod.sdf",
            T_world_objectInitial)
    station_plant = station.get_multibody_plant()
    parser = Parser(station_plant)
    if include_bin:
        parser.AddModelFromFile("extra_bin.sdf")
        station_plant.WeldFrames(station_plant.world_frame(), station_plant.GetFrameByName("extra_bin_base"), T_world_targetBin)
    if include_hoop:
        parser.AddModelFromFile("sdfs/hoop.sdf")
        station_plant.WeldFrames(station_plant.world_frame(), station_plant.GetFrameByName("base_link_hoop"), T_world_targetBin)
    station.Finalize()

    frames_to_draw = {"gripper": {"body"}}
    meshcat = None
    if zmq_url is not None:
        meshcat = ConnectMeshcatVisualizer(builder,
            station.get_scene_graph(),
            output_port=station.GetOutputPort("pose_bundle"),
            delete_prefix_on_load=False,
            frames_to_draw=frames_to_draw,
            zmq_url=zmq_url)

    diagram = builder.Build()

    plant = station.get_multibody_plant()
    context = plant.CreateDefaultContext()
    gripper = plant.GetBodyByName("body")

    initial_pose = plant.EvalBodyPoseInWorld(context, gripper)

    simulator = Simulator(diagram)
    simulator.set_target_realtime_rate(1.0)
    simulator.AdvanceTo(0.01)

    return initial_pose, meshcat
Пример #7
0
def simulateRobot(time, B, v_command):
    tree = RigidBodyTree(
        FindResource(
            os.path.dirname(os.path.realpath(__file__)) +
            "/block_pusher2.urdf"), FloatingBaseType.kFixed)

    # Set up a block diagram with the robot (dynamics), the controller, and a
    # visualization block.
    builder = DiagramBuilder()
    robot = builder.AddSystem(RigidBodyPlant(tree))

    controller = builder.AddSystem(DController(tree, B, v_command))
    builder.Connect(robot.get_output_port(0), controller.get_input_port(0))
    builder.Connect(controller.get_output_port(0), robot.get_input_port(0))

    Tview = np.array([[1., 0., 0., 0.], [0., 1., 0., 0.], [0., 0., 0., 1.]],
                     dtype=np.float64)
    visualizer = builder.AddSystem(
        PlanarRigidBodyVisualizer(tree,
                                  Tview,
                                  xlim=[-2.8, 4.8],
                                  ylim=[-2.8, 10]))
    builder.Connect(robot.get_output_port(0), visualizer.get_input_port(0))

    logger = builder.AddSystem(
        SignalLogger(tree.get_num_positions() + tree.get_num_velocities()))
    builder.Connect(robot.get_output_port(0), logger.get_input_port(0))

    diagram = builder.Build()

    # Set up a simulator to run this diagram
    simulator = Simulator(diagram)
    simulator.set_target_realtime_rate(1.0)
    simulator.set_publish_every_time_step(True)

    # Set the initial conditions
    context = simulator.get_mutable_context()
    state = context.get_mutable_continuous_state_vector()
    start1 = 3 * np.pi / 16
    start2 = 15 * np.pi / 16
    #np.pi/6 - eps, 2*np.pi/3 + eps, -np.pi/6 + eps, -2*np.pi/3 - eps,    np.pi/6 - eps, 2*np.pi/3 + eps, -np.pi/6 + eps, -2*np.pi/3 - eps
    state.SetFromVector(
        (start1, start2, -start1, -start2, np.pi + start1, start2,
         np.pi - start1, -start2, 1, 1, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
         0., 0.))  # (theta1, theta2, theta1dot, theta2dot)

    # Simulate for 10 seconds
    simulator.StepTo(time)
    #import pdb; pdb.set_trace()
    return (logger.data()[8:11, :], logger.data()[:8, :],
            logger.data()[19:22, :], logger.data()[11:19, :],
            logger.sample_times())
Пример #8
0
def RunSimulation(pendulum_plant,
                  control_law,
                  x0=np.random.random((4, 1)),
                  duration=30):
    pendulum_controller = PendulumController(control_law)

    # Create a simple block diagram containing the plant in feedback
    # with the controller.
    builder = DiagramBuilder()
    # The last pendulum plant we made is now owned by a deleted
    # system, so easiest path is for us to make a new one.
    plant = builder.AddSystem(
        InertialWheelPendulum(m1=pendulum_plant.m1,
                              l1=pendulum_plant.l1,
                              m2=pendulum_plant.m2,
                              l2=pendulum_plant.l2,
                              r=pendulum_plant.r,
                              g=pendulum_plant.g,
                              input_max=pendulum_plant.input_max))

    controller = builder.AddSystem(pendulum_controller)
    builder.Connect(plant.get_output_port(0), controller.get_input_port(0))
    builder.Connect(controller.get_output_port(0), plant.get_input_port(0))

    # Create a logger to capture the simulation of our plant
    input_log = builder.AddSystem(SignalLogger(1))
    input_log._DeclarePeriodicPublish(0.033333, 0.0)
    builder.Connect(controller.get_output_port(0), input_log.get_input_port(0))

    state_log = builder.AddSystem(SignalLogger(4))
    state_log._DeclarePeriodicPublish(0.033333, 0.0)
    builder.Connect(plant.get_output_port(0), state_log.get_input_port(0))

    diagram = builder.Build()

    # Set the initial conditions for the simulation.
    context = diagram.CreateDefaultContext()
    state = context.get_mutable_continuous_state_vector()
    state.SetFromVector(x0)

    # Create the simulator.
    simulator = Simulator(diagram, context)
    simulator.Initialize()
    simulator.set_publish_every_time_step(False)
    simulator.get_integrator().set_fixed_step_mode(True)
    simulator.get_integrator().set_maximum_step_size(0.005)

    # Simulate for the requested duration.
    simulator.StepTo(duration)

    return input_log, state_log
Пример #9
0
def playbackMotion(data1, data2, data3, data4, times):
    data = np.concatenate((data2, data1, data4, data3), axis=0)
    tree = RigidBodyTree(
        FindResource(
            os.path.dirname(os.path.realpath(__file__)) +
            "/block_pusher2.urdf"), FloatingBaseType.kFixed)

    # Set up a block diagram with the robot (dynamics), the controller, and a
    # visualization block.
    builder = DiagramBuilder()
    robot = builder.AddSystem(Player(data, times))

    Tview = np.array([[1., 0., 0., 0.], [0., 1., 0., 0.], [0., 0., 0., 1.]],
                     dtype=np.float64)
    visualizer = builder.AddSystem(
        PlanarRigidBodyVisualizer(tree,
                                  Tview,
                                  xlim=[-2.8, 4.8],
                                  ylim=[-2.8, 10]))
    #print(robot.get_output_port(0).size())
    builder.Connect(robot.get_output_port(0), visualizer.get_input_port(0))

    logger = builder.AddSystem(
        SignalLogger(tree.get_num_positions() + tree.get_num_velocities()))
    builder.Connect(robot.get_output_port(0), logger.get_input_port(0))

    diagram = builder.Build()

    # Set up a simulator to run this diagram
    simulator = Simulator(diagram)
    simulator.set_target_realtime_rate(1.0)
    simulator.set_publish_every_time_step(True)

    # Simulate for 10 seconds
    simulator.StepTo(times[-1] + 0.5)
Пример #10
0
    def plant_system(self):
        '''
        Implements the plant_system method in DrakeEnv by constructing a RigidBodyPlant
        '''

        # Add Systems
        builder = DiagramBuilder()
        self.scene_graph = builder.AddSystem(SceneGraph())
        self.mbp = builder.AddSystem(MultibodyPlant())

        # Load the model from the file
        AddModelFromSdfFile(file_name=self.model_path,
                            plant=self.mbp,
                            scene_graph=self.scene_graph)
        self.mbp.AddForceElement(UniformGravityFieldElement([0, 0, -9.81]))
        self.mbp.Finalize(self.scene_graph)
        assert self.mbp.geometry_source_is_registered()

        # Visualizer must be initialized after Finalize() and before CreateDefaultContext()
        self.init_visualizer()

        builder.Connect(
            self.mbp.get_geometry_poses_output_port(),
            self.scene_graph.get_source_pose_port(self.mbp.get_source_id()))

        # Expose the inputs and outputs and build the diagram
        self._input_port_index_action = builder.ExportInput(
            self.mbp.get_actuation_input_port())
        self._output_port_index_state = builder.ExportOutput(
            self.mbp.get_continuous_state_output_port())
        self.diagram = builder.Build()

        self._output = self.mbp.AllocateOutput()
        return self.diagram
Пример #11
0
def Simulate2dRamone(x0, duration,
        desired_goal = 0.0,
        print_period = 0.0):

    builder = DiagramBuilder()
    tree = RigidBodyTree()
    AddModelInstanceFromUrdfFile("ramone_act.urdf", FloatingBaseType.kRollPitchYaw, None, tree)

    plant = builder.AddSystem(RigidBodyPlant(tree))

    controller = builder.AddSystem(
        Ramone2dController(tree, 
                           desired_goal=desired_goal, 
                           print_period=print_period))

    builder.Connect(plant.get_output_port(0), controller.get_input_port(0))
    builder.Connect(controller.get_output_port(0), plant.get_input_port(0))

    state_log = builder.AddSystem(SignalLogger(plant.get_num_states()))
    builder.Connect(plant.get_output_port(0), state_log.get_input_port(0))

    diagram = builder.Build()
    simulator = Simulator(diagram)

    simulator.set_target_realtime_rate(1.0)
    simulator.set_publish_every_time_step(True)
    simulator.get_mutable_context().set_accuracy(1e-4)

    state = simulator.get_mutable_context().get_mutable_continuous_state_vector()

    state.SetFromVector(x0)

    simulator.StepTo(duration)

    return tree, controller, state_log, plant
Пример #12
0
def compile_scene_tree_clearance_geometry_to_mbp_and_sg(
        scene_tree, timestep=0.001, alpha=0.25):
    builder = DiagramBuilder()
    mbp, scene_graph = AddMultibodyPlantSceneGraph(
        builder, MultibodyPlant(time_step=timestep))
    parser = Parser(mbp)
    parser.package_map().PopulateFromEnvironment("ROS_PACKAGE_PATH")
    world_body = mbp.world_body()
    free_body_poses = []
    # For generating colors.
    node_class_to_color_dict = {}
    cmap = plt.cm.get_cmap('jet')
    cmap_counter = 0.
    for node in scene_tree.nodes:
        if node.tf is not None and node.physics_geometry_info is not None:
            # Don't have to do anything if this does not introduce geometry.
            sanity_check_node_tf_and_physics_geom_info(node)
            phys_geom_info = node.physics_geometry_info
            has_clearance_geometry = len(phys_geom_info.clearance_geometry) > 0
            if not has_clearance_geometry:
                continue

            # Add a body for this node and register the clearance geometry.
            # TODO(gizatt) This tree body index is built in to disambiguate names.
            # But I forsee a name-to-stuff resolution crisis when inference time comes...
            # this might get resolved by the solution to that.
            body = mbp.AddRigidBody(name=node.name,
                                    M_BBo_B=phys_geom_info.spatial_inertia)
            tf = torch_tf_to_drake_tf(node.tf)
            mbp.SetDefaultFreeBodyPose(body, tf)

            # Pick out a color for this class.
            node_type_string = node.__class__.__name__
            if node_type_string in node_class_to_color_dict.keys():
                color = node_class_to_color_dict[node_type_string]
            else:
                color = list(cmap(cmap_counter))
                color[3] = alpha
                node_class_to_color_dict[node_type_string] = color
                cmap_counter = np.fmod(cmap_counter + np.pi * 2., 1.)

            # Handle adding primitive geometry by adding it all to one
            # mbp.
            if len(phys_geom_info.clearance_geometry) > 0:
                for k, (tf, geometry) in enumerate(
                        phys_geom_info.clearance_geometry):
                    mbp.RegisterCollisionGeometry(
                        body=body,
                        X_BG=torch_tf_to_drake_tf(tf),
                        shape=geometry,
                        name=node.name + "_col_%03d" % k,
                        coulomb_friction=default_friction)
                    mbp.RegisterVisualGeometry(body=body,
                                               X_BG=torch_tf_to_drake_tf(tf),
                                               shape=geometry,
                                               name=node.name +
                                               "_vis_%03d" % k,
                                               diffuse_color=color)

    return builder, mbp, scene_graph
Пример #13
0
def main():
    state_rec = StateReceiver()
    assert type(state_rec) is StateReceiver
    assert state_rec.get_utime_output_port().size() == 1
    assert state_rec.get_position_output_port().size() == kCassiePositions
    assert state_rec.get_velocity_output_port().size() == kCassieVelocities
    assert state_rec.get_contact_output_port().size() == 2

    command_pub = CommandSender()
    assert type(command_pub) is CommandSender
    assert command_pub.get_utime_input_port().size() == 1
    assert command_pub.get_torque_input_port().size() == kCassieActuators
    assert command_pub.get_motor_pos_input_port().size() == kCassieActuators
    assert command_pub.get_motor_vel_input_port().size() == kCassieActuators
    assert command_pub.get_kp_input_port().size() == kCassieActuators
    assert command_pub.get_kd_input_port().size() == kCassieActuators
    assert command_pub.get_ki_input_port().size() == kCassieActuators
    assert command_pub.get_leak_input_port().size() == kCassieActuators
    assert command_pub.get_clamp_input_port().size() == kCassieActuators

    lcm = DrakeLcm()
    builder = DiagramBuilder()

    state_rec = addLcmStateReceiver(builder, lcm)
    assert type(state_rec) is StateReceiver

    command_pub = addLcmCommandSender(builder, lcm, 0.0005)
    assert type(command_pub) is CommandSender

    state, command = addLcmControlComms(builder, lcm, 0.0005)
    assert type(state) is StateReceiver
    assert type(command) is CommandSender
Пример #14
0
    def test_visualizer(self):
        builder = DiagramBuilder()
        scene_graph = builder.AddSystem(SceneGraph())
        state = GliderState(np.zeros((7,)))
        state.x = -.3
        state.z = 0.1
        state.pitch = 0.2
        state.elevator = .4
        source = builder.AddSystem(ConstantVectorSource(state[:]))
        geom = GliderGeometry.AddToBuilder(builder, source.get_output_port(0),
                                           scene_graph)
        # plt_vis = ConnectPlanarSceneGraphVisualizer(builder, scene_graph)
        drake_viz = ConnectDrakeVisualizer(builder, scene_graph)
        diagram = builder.Build()

        context = diagram.CreateDefaultContext()
        diagram.Publish(context)
Пример #15
0
def build_block_diagram(boat, controller):

    builder = DiagramBuilder()
    boat = builder.AddSystem(boat)
    boat.set_name('boat')

    # logger to track trajectories
    logger = LogOutput(boat.get_output_port(0), builder)
    logger.set_name('logger')

    # expose boats input as an input port
    builder.ExportInput(boat.get_input_port(0))

    # build diagram
    diagram = builder.Build()
    diagram.set_name('diagram')

    return diagram
Пример #16
0
def main():
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument("-t1", default=0.05, help="Extend leg")
    parser.add_argument("-t2", default=0.5, help="Dwell at top")
    parser.add_argument("-t3", default=0.5, help="Contract leg")
    parser.add_argument("-t4", default=0.1, help="Wait at bottom")
    setup_argparse_for_setup_dot_diagram(parser)
    MeshcatVisualizer.add_argparse_argument(parser)
    args = parser.parse_args()
    t1 = float(args.t1)
    t2 = float(args.t2)
    t3 = float(args.t3)
    t4 = float(args.t4)

    q_crouch = np.array([
        1600, 2100, 2000, 1600, 2100, 2000, 1400, 2100, 2000, 1400, 2100, 2000
    ])

    q_extend = np.array([
        1600, 1600, 2400, 1600, 1600, 2400, 1400, 1600, 2400, 1400, 1600, 2400
    ])

    breaks = np.cumsum([0., t1, t2, t3, t4])
    samples = np.stack([q_crouch, q_extend, q_extend, q_crouch, q_crouch]).T
    trajectory = PiecewisePolynomial.FirstOrderHold(breaks, samples)

    builder = DiagramBuilder()
    plant, scene_graph, servo_controller = setup_dot_diagram(builder, args)

    trajectory_source = builder.AddSystem(TrajectoryLooper(trajectory))
    builder.Connect(trajectory_source.get_output_port(0),
                    servo_controller.get_input_port(0))

    if args.meshcat:
        meshcat = ConnectMeshcatVisualizer(
            builder,
            output_port=scene_graph.get_query_output_port(),
            zmq_url=args.meshcat,
            open_browser=args.open_browser)

    diagram = builder.Build()
    simulator = Simulator(diagram)
    simulator.set_target_realtime_rate(1.0)
    simulator.AdvanceTo(1E6)
Пример #17
0
def gripper_forward_kinematics_example():
    builder = DiagramBuilder()

    station = builder.AddSystem(ManipulationStation())
    station.SetupClutterClearingStation()
    station.Finalize()

    frames_to_draw = {
        "iiwa": {
            "iiwa_link_1", "iiwa_link_2", "iiwa_link_3", "iiwa_link_4",
            "iiwa_link_5", "iiwa_link_6", "iiwa_link_7"
        },
        "gripper": {"body"}
    }

    meshcat = ConnectMeshcatVisualizer(
        builder,
        station.get_scene_graph(),
        output_port=station.GetOutputPort("pose_bundle"),
        frames_to_draw=frames_to_draw,
        axis_length=0.3,
        axis_radius=0.01)

    diagram = builder.Build()
    context = diagram.CreateDefaultContext()

    # xyz = Text(value="", description="gripper position (m): ", layout=Layout(width='500px'), style={'description_width':'initial'})
    # rpy = Text(value="", description="gripper roll-pitch-yaw (rad): ", layout=Layout(width='500px'), style={'description_width':'initial'})
    plant = station.get_multibody_plant()

    gripper = plant.GetBodyByName("body")

    def pose_callback(context):
        pose = plant.EvalBodyPoseInWorld(context, gripper)  # Important
        # xyz.value = np.array2string(pose.translation(), formatter={'float': lambda x: "{:3.2f}".format(x)})
        # rpy.value = np.array2string(RollPitchYaw(pose.rotation()).vector(), formatter={'float': lambda x: "{:3.2f}".format(x)})

    meshcat.load()
    MakeJointSlidersThatPublishOnCallback(station.get_multibody_plant(),
                                          meshcat,
                                          context,
                                          my_callback=pose_callback)
Пример #18
0
def animate(plant, x_trajectory):
    builder = DiagramBuilder()
    source = builder.AddSystem(TrajectorySource(x_trajectory))
    builder.AddSystem(scene_graph)
    pos_to_pose = builder.AddSystem(
        MultibodyPositionToGeometryPose(plant, input_multibody_state=True))
    builder.Connect(source.get_output_port(0), pos_to_pose.get_input_port())
    builder.Connect(pos_to_pose.get_output_port(),
                    scene_graph.get_source_pose_port(plant.get_source_id()))

    visualizer = builder.AddSystem(
        PlanarSceneGraphVisualizer(scene_graph,
                                   xlim=[-2, 2],
                                   ylim=[-1.25, 2],
                                   ax=ax[0]))
    builder.Connect(scene_graph.get_pose_bundle_output_port(),
                    visualizer.get_input_port(0))

    simulator = Simulator(builder.Build())
    simulator.AdvanceTo(x_trajectory.end_time())
Пример #19
0
def grasp_poses_example():
    builder = DiagramBuilder()

    plant, scene_graph = AddMultibodyPlantSceneGraph(builder, time_step=0.0)
    parser = Parser(plant, scene_graph)
    grasp = parser.AddModelFromFile(
        FindResourceOrThrow(
            "drake/manipulation/models/wsg_50_description/sdf/schunk_wsg_50_no_tip.sdf"
        ), "grasp")
    brick = parser.AddModelFromFile(
        FindResourceOrThrow(
            "drake/examples/manipulation_station/models/061_foam_brick.sdf"))
    plant.Finalize()

    meshcat = ConnectMeshcatVisualizer(builder, scene_graph)

    diagram = builder.Build()
    context = diagram.CreateDefaultContext()
    plant_context = plant.GetMyContextFromRoot(context)

    B_O = plant.GetBodyByName("base_link", brick)
    X_WO = plant.EvalBodyPoseInWorld(plant_context, B_O)

    B_Ggrasp = plant.GetBodyByName("body", grasp)
    p_GgraspO = [0, 0.12, 0]
    R_GgraspO = RotationMatrix.MakeXRotation(np.pi / 2.0).multiply(
        RotationMatrix.MakeZRotation(np.pi / 2.0))

    X_GgraspO = RigidTransform(R_GgraspO, p_GgraspO)
    X_OGgrasp = X_GgraspO.inverse()
    X_WGgrasp = X_WO.multiply(X_OGgrasp)

    plant.SetFreBodyPose(plant_context, B_Ggrasp, X_WGgrasp)
    # Open the fingers, too
    plant.GetJointByName("left_finger_sliding_joint",
                         grasp).set_translation(plant_context, -0.054)
    plant.GetJointByName("right_finger_sliding_joint",
                         grasp).set_translation(plant_context, 0.054)

    meshcat.load()
    diagram.Publish(context)
Пример #20
0
def Simulate2dBallAndBeam(x0, duration):

    builder = DiagramBuilder()

    # Load in the ball and beam from a description file.
    tree = RigidBodyTree()
    AddModelInstancesFromSdfString(
        open("ball_and_beam.sdf", 'r').read(), FloatingBaseType.kFixed, None,
        tree)

    # A RigidBodyPlant wraps a RigidBodyTree to allow
    # forward dynamical simulation.
    plant = builder.AddSystem(RigidBodyPlant(tree))

    # Spawn a controller and hook it up
    controller = builder.AddSystem(BallAndBeam2dController(tree))
    builder.Connect(plant.get_output_port(0), controller.get_input_port(0))
    builder.Connect(controller.get_output_port(0), plant.get_input_port(0))

    # Create a logger to log at 30hz
    state_log = builder.AddSystem(SignalLogger(plant.get_num_states()))
    state_log._DeclarePeriodicPublish(0.0333, 0.0)  # 30hz logging
    builder.Connect(plant.get_output_port(0), state_log.get_input_port(0))

    # Create a simulator
    diagram = builder.Build()
    simulator = Simulator(diagram)

    # Don't limit realtime rate for this sim, since we
    # produce a video to render it after simulating the whole thing.
    #simulator.set_target_realtime_rate(100.0)
    simulator.set_publish_every_time_step(False)

    # Force the simulator to use a fixed-step integrator,
    # which is much faster for this stiff system. (Due to the
    # spring-model of collision, the default variable-timestep
    # integrator will take very short steps. I've chosen the step
    # size here to be fast while still being stable in most situations.)
    integrator = simulator.get_mutable_integrator()
    integrator.set_fixed_step_mode(True)
    integrator.set_maximum_step_size(0.001)

    # Set the initial state
    state = simulator.get_mutable_context(
    ).get_mutable_continuous_state_vector()
    state.SetFromVector(x0)

    # Simulate!
    simulator.StepTo(duration)

    return tree, controller, state_log
Пример #21
0
    def RunSimulation(self, real_time_rate=1.0):
        '''
        Here we test using the NNSystem in a Simulator to drive
        an acrobot.
        '''
        sdf_file = "assets/acrobot.sdf"
        urdf_file = "assets/acrobot.urdf"

        builder = DiagramBuilder()
        plant, scene_graph = AddMultibodyPlantSceneGraph(builder)
        parser = Parser(plant=plant, scene_graph=scene_graph)
        parser.AddModelFromFile(sdf_file)
        plant.Finalize(scene_graph)

        # Add
        nn_system = NNSystem(self.pytorch_nn_object)
        builder.AddSystem(nn_system)

        # NN -> plant
        builder.Connect(nn_system.NN_out_output_port,
                        plant.get_actuation_input_port())
        # plant -> NN
        builder.Connect(plant.get_continuous_state_output_port(),
                        nn_system.NN_in_input_port)

        # Add meshcat visualizer
        meshcat = MeshcatVisualizer(scene_graph)
        builder.AddSystem(meshcat)
        # builder.Connect(scene_graph.GetOutputPort("lcm_visualization"),
        builder.Connect(scene_graph.get_pose_bundle_output_port(),
                        meshcat.GetInputPort("lcm_visualization"))

        # build diagram
        diagram = builder.Build()
        meshcat.load()
        # time.sleep(2.0)
        RenderSystemWithGraphviz(diagram)

        # construct simulator
        simulator = Simulator(diagram)

        # context = diagram.GetMutableSubsystemContext(
        #     self.station, simulator.get_mutable_context())

        simulator.set_publish_every_time_step(False)
        simulator.set_target_realtime_rate(real_time_rate)
        simulator.Initialize()
        sim_duration = 5.
        simulator.StepTo(sim_duration)
        print("stepping complete")
Пример #22
0
def simulate_drake_system(plant):
    # Create a simple block diagram containing our system.
    builder = DiagramBuilder()
    system = builder.AddSystem(plant)
    logger = LogOutput(system.get_output_port(0), builder)
    diagram = builder.Build()

    # Set the initial conditions, x(0).
    context = diagram.CreateDefaultContext()
    context.SetContinuousState([0, 0, 20, 10, 0, 0])

    # Create the simulator, and simulate for 10 seconds.
    simulator = Simulator(diagram, context)
    simulator.AdvanceTo(30)

    # Plotting
    x_sol = logger.data().T

    plot_trj_3_wind(x_sol[:, 0:3], np.array([0, 0, 0]))
    plt.show()

    return 0
Пример #23
0
def PendulumExample():
    builder = DiagramBuilder()
    plant = builder.AddSystem(PendulumPlant())
    scene_graph = builder.AddSystem(SceneGraph())
    PendulumGeometry.AddToBuilder(builder, plant.get_state_output_port(),
                                  scene_graph)
    MeshcatVisualizerCpp.AddToBuilder(
        builder, scene_graph, meshcat,
        MeshcatVisualizerParams(publish_period=np.inf))

    builder.ExportInput(plant.get_input_port(), "torque")
    # Note: The Pendulum-v0 in gym outputs [cos(theta), sin(theta), thetadot]
    builder.ExportOutput(plant.get_state_output_port(), "state")

    # Add a camera (I have sugar for this in the manip repo)
    X_WC = RigidTransform(RotationMatrix.MakeXRotation(-np.pi / 2),
                          [0, -1.5, 0])
    rgbd = AddRgbdSensor(builder, scene_graph, X_WC)
    builder.ExportOutput(rgbd.color_image_output_port(), "camera")

    diagram = builder.Build()
    simulator = Simulator(diagram)

    def reward(system, context):
        plant_context = plant.GetMyContextFromRoot(context)
        state = plant_context.get_continuous_state_vector()
        u = plant.get_input_port().Eval(plant_context)[0]
        theta = state[0] % 2 * np.pi  # Wrap to 2*pi
        theta_dot = state[1]
        return (theta - np.pi)**2 + 0.1 * theta_dot**2 + 0.001 * u

    max_torque = 3
    env = DrakeGymEnv(simulator,
                      time_step=0.05,
                      action_space=gym.spaces.Box(low=np.array([-max_torque]),
                                                  high=np.array([max_torque])),
                      observation_space=gym.spaces.Box(
                          low=np.array([-np.inf, -np.inf]),
                          high=np.array([np.inf, np.inf])),
                      reward=reward,
                      render_rgb_port_id="camera")
    check_env(env)

    if show:
        env.reset()
        image = env.render(mode='rgb_array')
        fig, ax = plt.subplots()
        ax.imshow(image)
        plt.show()
Пример #24
0
def RunPendulumSimulation(pendulum_plant,
                          pendulum_controller,
                          x0=[0.9, 0.0],
                          duration=10):
    '''
        Accepts a pendulum_plant (which should be a
        DampedOscillatingPendulumPlant) and simulates it for 
        'duration' seconds from initial state `x0`. Returns a 
        logger object which can return simulated timesteps `
        logger.sample_times()` (N-by-1) and simulated states
        `logger.data()` (2-by-N).
    '''

    # Create a simple block diagram containing the plant in feedback
    # with the controller.
    builder = DiagramBuilder()
    plant = builder.AddSystem(pendulum_plant)
    controller = builder.AddSystem(pendulum_controller)
    builder.Connect(plant.get_output_port(0), controller.get_input_port(0))
    builder.Connect(controller.get_output_port(0), plant.get_input_port(0))

    # Create a logger to capture the simulation of our plant
    # (We tell the logger to expect a 3-variable input,
    # and hook it up to the pendulum plant's 3-variable output.)
    logger = builder.AddSystem(SignalLogger(3))
    logger.DeclarePeriodicPublish(0.033333, 0.0)

    builder.Connect(plant.get_output_port(0), logger.get_input_port(0))

    diagram = builder.Build()

    # Create the simulator.
    simulator = Simulator(diagram)
    simulator.Initialize()
    simulator.set_publish_every_time_step(False)

    # Set the initial conditions for the simulation.
    state = simulator.get_mutable_context().get_mutable_state()\
                     .get_mutable_continuous_state().get_mutable_vector()
    state.SetFromVector(x0)

    # Simulate for the requested duration.
    simulator.AdvanceTo(duration)

    # Return the logger, which stores the output of the
    # plant across the time steps of the simulation.
    return logger
Пример #25
0
def jacobian_controller_example():
    builder = DiagramBuilder()

    station = builder.AddSystem(ManipulationStation())
    station.SetupClutterClearingStation()
    station.Finalize()

    controller = builder.AddSystem(
        PseudoInverseController(station.get_multibody_plant()))
    integrator = builder.AddSystem(Integrator(7))

    builder.Connect(controller.get_output_port(), integrator.get_input_port())
    builder.Connect(integrator.get_output_port(),
                    station.GetInputPort("iiwa_position"))
    builder.Connect(station.GetOutputPort("iiwa_position_measured"),
                    controller.get_input_port())

    meshcat = ConnectMeshcatVisualizer(
        builder,
        station.get_scene_graph(),
        output_port=station.GetOutputPort("pose_bundle"))

    diagram = builder.Build()
    simulator = Simulator(diagram)
    station_context = station.GetMyContextFromRoot(
        simulator.get_mutable_context())
    station.GetInputPort("iiwa_feedforward_torque").FixValue(
        station_context, np.zeros((7, 1)))
    station.GetInputPort("wsg_position").FixValue(station_context, [0.1])

    integrator.GetMyContextFromRoot(simulator.get_mutable_context(
    )).get_mutable_continuous_state_vector().SetFromVector(
        station.GetIiwaPosition(station_context))

    simulator.set_target_realtime_rate(1.0)
    simulator.AdvanceTo(0.01)

    return simulator
Пример #26
0
def cartPoleTest(args):
    file_name = FindResourceOrThrow(
        "drake/examples/multibody/cart_pole/cart_pole.sdf")
    builder = DiagramBuilder()
    scene_graph = builder.AddSystem(SceneGraph())
    cart_pole = builder.AddSystem(MultibodyPlant())
    AddModelFromSdfFile(
        file_name=file_name, plant=cart_pole, scene_graph=scene_graph)
    cart_pole.AddForceElement(UniformGravityFieldElement([0, 0, -9.81]))
    cart_pole.Finalize(scene_graph)
    assert cart_pole.geometry_source_is_registered()

    builder.Connect(
        cart_pole.get_geometry_poses_output_port(),
        scene_graph.get_source_pose_port(cart_pole.get_source_id()))

    visualizer = builder.AddSystem(MeshcatVisualizer(scene_graph))
    builder.Connect(scene_graph.get_pose_bundle_output_port(),
                    visualizer.get_input_port(0))

    diagram = builder.Build()
    visualizer.load()

    diagram_context = diagram.CreateDefaultContext()
    cart_pole_context = diagram.GetMutableSubsystemContext(
        cart_pole, diagram_context)

    cart_pole_context.FixInputPort(
        cart_pole.get_actuation_input_port().get_index(), [0])

    cart_slider = cart_pole.GetJointByName("CartSlider")
    pole_pin = cart_pole.GetJointByName("PolePin")
    cart_slider.set_translation(context=cart_pole_context, translation=0.)
    pole_pin.set_angle(context=cart_pole_context, angle=2.)

    simulator = Simulator(diagram, diagram_context)
    simulator.set_publish_every_time_step(False)
    simulator.set_target_realtime_rate(args.target_realtime_rate)
    simulator.Initialize()
    simulator.StepTo(args.duration)
Пример #27
0
 def __init__(self, file=None, terrain=FlatTerrain(), dlevel=1):
     """
     Initialize TimeSteppingMultibodyPlant with a model from a file and an arbitrary terrain geometry. Initialization also welds the first frame in the MultibodyPlant to the world frame
     """
     self.builder = DiagramBuilder()
     self.multibody, self.scene_graph = AddMultibodyPlantSceneGraph(
         self.builder, 0.001)
     # Store the terrain
     self.terrain = terrain
     self._dlevel = dlevel
     # Build the MultibodyPlant from the file, if one exists
     self.model_index = []
     if file is not None:
         # Parse the file
         self.model_index = Parser(self.multibody).AddModelFromFile(
             FindResource(file))
     # Initialize the collision data
     self.collision_frames = []
     self.collision_poses = []
     self.collision_radius = []
Пример #28
0
def kukaTest(args):
    file_name = FindResourceOrThrow(
        "drake/manipulation/models/iiwa_description/sdf/iiwa14_no_collision"
        ".sdf")
    builder = DiagramBuilder()
    scene_graph = builder.AddSystem(SceneGraph())
    kuka = builder.AddSystem(MultibodyPlant())
    AddModelFromSdfFile(
        file_name=file_name, plant=kuka, scene_graph=scene_graph)
    kuka.AddForceElement(UniformGravityFieldElement([0, 0, -9.81]))
    kuka.Finalize(scene_graph)
    assert kuka.geometry_source_is_registered()

    builder.Connect(
        kuka.get_geometry_poses_output_port(),
        scene_graph.get_source_pose_port(kuka.get_source_id()))

    visualizer = builder.AddSystem(MeshcatVisualizer(scene_graph))
    builder.Connect(scene_graph.get_pose_bundle_output_port(),
                    visualizer.get_input_port(0))

    diagram = builder.Build()
    visualizer.load()

    diagram_context = diagram.CreateDefaultContext()
    kuka_context = diagram.GetMutableSubsystemContext(
        kuka, diagram_context)

    kuka_context.FixInputPort(
        kuka.get_actuation_input_port().get_index(), np.zeros(
            kuka.get_actuation_input_port().size()))

    simulator = Simulator(diagram, diagram_context)
    simulator.set_publish_every_time_step(False)
    simulator.set_target_realtime_rate(args.target_realtime_rate)
    simulator.Initialize()
    simulator.StepTo(args.duration)
Пример #29
0
def simulate():
    # Animate the resulting policy.
    builder = DiagramBuilder()
    plant = builder.AddSystem(DoubleIntegrator())

    vi_policy = builder.AddSystem(policy)
    builder.Connect(plant.get_output_port(0), vi_policy.get_input_port(0))
    builder.Connect(vi_policy.get_output_port(0), plant.get_input_port(0))
    diagram = builder.Build()
    simulator = Simulator(diagram)

    logger = LogOutput(plant.get_output_port(0), builder)
    logger.set_name("logger")

    simulator.get_mutable_context().SetContinuousState(env.reset())

    simulator.AdvanceTo(10. if get_ipython() is not None else 5.)

    return logger
Пример #30
0
def main():
    parser = argparse.ArgumentParser(description=__doc__)
    setup_argparse_for_setup_dot_diagram(parser)
    parser.add_argument("--interactive", action='store_true')
    MeshcatVisualizer.add_argparse_argument(parser)
    args = parser.parse_args()

    q_init = np.array([
        1700, 2000, 2000, 1700, 2000, 2000, 1300, 2000, 2000, 1300, 2000, 2000
    ])

    builder = DiagramBuilder()
    plant, scene_graph, servo_controller = setup_dot_diagram(builder, args)

    if args.interactive:
        # Add sliders to set positions of the joints.
        sliders = builder.AddSystem(ServoSliders(servo_controller))
        sliders.set_position(q_init)
        builder.Connect(sliders.get_output_port(0),
                        servo_controller.get_input_port(0))
    else:
        source = builder.AddSystem(
            ConstantVectorSource(np.zeros(servo_controller.nu)))
        builder.Connect(source.get_output_port(0),
                        servo_controller.get_input_port(0))

    if args.meshcat:
        meshcat = ConnectMeshcatVisualizer(
            builder,
            output_port=scene_graph.get_query_output_port(),
            zmq_url=args.meshcat,
            open_browser=args.open_browser)

    diagram = builder.Build()
    simulator = Simulator(diagram)
    simulator.set_target_realtime_rate(1.0)
    simulator.AdvanceTo(1E6)