Пример #1
0
    def min_time_traj_avoid_obs(self,
                                p0,
                                v0,
                                pf,
                                vf,
                                obstacles=None,
                                p_puck=None):
        """Minimum time trajectory while avoiding obstacles."""
        x0 = np.array(np.concatenate((p0, v0), axis=0))
        xf = np.concatenate((pf, vf), axis=0)

        N = 20
        prog = DirectCollocation(self.sys_c,
                                 self.sys_c.CreateDefaultContext(),
                                 N,
                                 minimum_timestep=self.params.dt,
                                 maximum_timestep=self.params.dt)

        # Initial and final state
        prog.AddBoundingBoxConstraint(x0, x0, prog.initial_state())
        prog.AddQuadraticErrorCost(Q=np.eye(4),
                                   x_desired=xf,
                                   vars=prog.final_state())
        u = prog.input()
        prog.AddRunningCost(0.1 * u.dot(u))

        prog.AddEqualTimeIntervalsConstraints()

        ## Input saturation
        self.add_input_limits(prog)

        # Arena constraints
        self.add_arena_limits(prog)

        prog.AddFinalCost(prog.time())

        # Add non-linear constraints - will solve with SNOPT
        # Avoid other players
        if obstacles != None:
            for p_obs in obstacles:
                distance = prog.state()[0:2] - p_obs
                prog.AddConstraintToAllKnotPoints(
                    distance.dot(distance) >= (2.0 *
                                               self.params.player_radius)**2)

        # avoid hitting the puck while generating a kicking trajectory
        #if not p_puck.any(None):
        #    distance = prog.state()[0:2] - p_puck
        #    prog.AddConstraintToAllKnotPoints(distance.dot(distance) >= (self.params.player_radius + self.params.puck_radius)**2)

        solver = SnoptSolver()
        result = solver.Solve(prog)
        solution_found = result.is_success()
        if not solution_found:
            print("Solution not found for intercepting_with_obs_avoidance")

        u_traj = prog.ReconstructInputTrajectory(result)
        u_values = u_traj.vector_values(u_traj.get_segment_times())
        return solution_found, u_values
Пример #2
0
		def runDircol(self,x0,xf,tf0):
			N = 15 # constant
			#N = np.int(tf0 * 10) # "10Hz" / samples per second
			
			context = self.CreateDefaultContext()
			dircol  = DirectCollocation(self, context, num_time_samples=N,
							   minimum_timestep=0.05, maximum_timestep=1.0)
			u = dircol.input()
			# set some constraints on inputs
			dircol.AddEqualTimeIntervalsConstraints()
			
			dircol.AddConstraintToAllKnotPoints(u[1] <=  self.slewmax)
			dircol.AddConstraintToAllKnotPoints(u[1] >= -self.slewmax)
			dircol.AddConstraintToAllKnotPoints(u[0] <=  self.umax)
			dircol.AddConstraintToAllKnotPoints(u[0] >= -self.umax)
			
			# constrain the last input to be zero (at least for the u input)
			#import pdb; pdb.set_trace()
			dv = dircol.decision_variables()
			for i in range(3, self.nX*N, 4):
				alfa_state = dv[i] #u[t_end]
				dircol.AddBoundingBoxConstraint(-self.alfamax, self.alfamax, alfa_state)
			#final_u_decision_var = dv[self.nX*N + self.nU*N - 1] #u[t_end]
			#dircol.AddLinearEqualityConstraint(final_u_decision_var, 0.0)
			#first_u_decision_var = dv[self.nX*N + 1 ] #u[t_0]
			#dircol.AddLinearEqualityConstraint(first_u_decision_var, 0.0)
			
			# set some constraints on start and final pose
			eps = 0.0 * np.ones(self.nX) # relaxing factor
			dircol.AddBoundingBoxConstraint(x0, x0, dircol.initial_state())
			dircol.AddBoundingBoxConstraint(xf-eps, \
											xf+eps, dircol.final_state())

			R = 1.0*np.eye(self.nU)  # Cost on input "effort".
			dircol.AddRunningCost( u.transpose().dot(R.dot(u)) ) 

			# Add a final cost equal to the total duration.
			dircol.AddFinalCost(dircol.time())

			# guess initial trajectory
			initial_x_trajectory = \
				PiecewisePolynomial.FirstOrderHold([0., tf0], np.column_stack((x0, xf)))
			dircol.SetInitialTrajectory(PiecewisePolynomial(), initial_x_trajectory)

			# optimize
			result = Solve(dircol)
			print('******\nRunning trajectory optimization:')
			print('w/ solver %s' %(result.get_solver_id().name()))
			print(result.get_solution_result())
			assert(result.is_success())

			xtraj = dircol.ReconstructStateTrajectory(result)
			utraj = dircol.ReconstructInputTrajectory(result)

			# return nominal trajectory
			return utraj,xtraj
Пример #3
0
    def compute_control(self, x0_p1, x0_p2, xf_p1, xf_p2, obstacles):
        """This is basically the single-agent MPC algorithm"""
        prog = DirectCollocation(self.mpc_params.sys_two_players_c, self.mpc_params.sys_two_players_c.CreateDefaultContext(), self.mpc_params.N+1,
                    minimum_timestep=self.mpc_params.minT, maximum_timestep=self.mpc_params.maxT)
        x0 = np.concatenate((x0_p1, x0_p2), axis=0)
        prog.AddBoundingBoxConstraint(x0, x0, prog.initial_state())
        x_des = np.concatenate((xf_p1, xf_p2))
        Q = np.zeros((8,8))
        Q[0:4,0:4] = self.mpc_params.Omega_N_max
        Q[4:8,4:8] = self.mpc_params.Omega_N_max
        prog.AddQuadraticErrorCost(Q, x_desired=x_des, vars=prog.final_state())

        prog.AddEqualTimeIntervalsConstraints()

        for obs_pos in obstacles: # both players should avoid the other players
            for n in range(self.mpc_params.N):
                x = prog.state()
                prog.AddConstraintToAllKnotPoints((x[0:2]-obs_pos).dot(x[0:2]-obs_pos) >= (2.0*self.sim_params.player_radius)**2)
                prog.AddConstraintToAllKnotPoints((x[4:6]-obs_pos).dot(x[4:6]-obs_pos) >= (2.0*self.sim_params.player_radius)**2)

        # players should avoid each other
        prog.AddConstraintToAllKnotPoints((x[0:2]-x[4:6]).dot(x[0:2]-x[4:6]) >= (2.0*self.sim_params.player_radius)**2)
        
        # input constraints
        for i in range(4):
            prog.AddConstraintToAllKnotPoints(prog.input()[i] <=  self.sim_params.input_limit)
            prog.AddConstraintToAllKnotPoints(prog.input()[i] >= -self.sim_params.input_limit)

        r = self.sim_params.player_radius
        prog.AddConstraintToAllKnotPoints(prog.state()[0] + r <=  self.sim_params.arena_limits_x / 2.0)
        prog.AddConstraintToAllKnotPoints(prog.state()[0] - r >= -self.sim_params.arena_limits_x / 2.0)
        prog.AddConstraintToAllKnotPoints(prog.state()[1] + r <=  self.sim_params.arena_limits_y / 2.0)
        prog.AddConstraintToAllKnotPoints(prog.state()[1] - r >= -self.sim_params.arena_limits_y / 2.0)
        prog.AddConstraintToAllKnotPoints(prog.state()[4] + r <=  self.sim_params.arena_limits_x / 2.0)
        prog.AddConstraintToAllKnotPoints(prog.state()[4] - r >= -self.sim_params.arena_limits_x / 2.0)
        prog.AddConstraintToAllKnotPoints(prog.state()[5] + r <=  self.sim_params.arena_limits_y / 2.0)
        prog.AddConstraintToAllKnotPoints(prog.state()[5] - r >= -self.sim_params.arena_limits_y / 2.0)

        prog.AddFinalCost(prog.time())

        if not self.prev_u is None and not self.prev_x is None:
            prog.SetInitialTrajectory(traj_init_u=self.prev_u, traj_init_x=self.prev_x)

        solver = SnoptSolver()
        result = solver.Solve(prog)

        u_traj = prog.ReconstructInputTrajectory(result)
        x_traj = prog.ReconstructStateTrajectory(result)

        self.prev_u = u_traj
        self.prev_x = x_traj

        u_vals = u_traj.vector_values(u_traj.get_segment_times())
        x_vals = x_traj.vector_values(x_traj.get_segment_times())

        return True, u_vals[0:2,0], u_vals[2:4,0]
Пример #4
0
    def compute_control(self, x_des, sim_state, team_name, player_id):
        prog = DirectCollocation(self.mpc_params.sys,
                                 self.mpc_params.sys.CreateDefaultContext(),
                                 self.mpc_params.N,
                                 minimum_timestep=self.mpc_params.minT,
                                 maximum_timestep=self.mpc_params.maxT)

        pos0 = sim_state.get_player_pos(team_name, player_id)
        vel0 = sim_state.get_player_vel(team_name, player_id)
        x0 = np.concatenate((pos0, vel0), axis=0)
        prog.AddBoundingBoxConstraint(x0, x0, prog.initial_state())
        prog.AddQuadraticErrorCost(Q=self.mpc_params.Omega_N_max,
                                   x_desired=x_des,
                                   vars=prog.final_state())

        obstacle_positions = self.get_obstacle_positions(
            sim_state, team_name, player_id)
        for obs_pos in obstacle_positions:
            for n in range(self.mpc_params.N):
                x = prog.state()
                prog.AddConstraintToAllKnotPoints(
                    (x[0:2] - obs_pos).dot(x[0:2] - obs_pos) >= (
                        2.0 * self.sim_params.player_radius)**2)

        prog.AddEqualTimeIntervalsConstraints()

        self.add_input_limits(prog)
        self.add_arena_limits(prog)

        prog.AddFinalCost(prog.time())

        if not self.prev_u is None and not self.prev_x is None:
            prog.SetInitialTrajectory(traj_init_u=self.prev_u,
                                      traj_init_x=self.prev_x)

        solver = SnoptSolver()
        result = solver.Solve(prog)

        u_traj = prog.ReconstructInputTrajectory(result)
        x_traj = prog.ReconstructStateTrajectory(result)

        u_vals = u_traj.vector_values(u_traj.get_segment_times())

        self.prev_u = u_traj
        self.prev_x = x_traj

        return u_vals[:, 0]
Пример #5
0
        def runDircol(self, x0, xf, tf0):
            N = 21  #np.int(tf0 * 10) # "10Hz" samples per second

            context = self.CreateDefaultContext()
            dircol = DirectCollocation(self,
                                       context,
                                       num_time_samples=N,
                                       minimum_timestep=0.05,
                                       maximum_timestep=1.0)
            u = dircol.input()

            dircol.AddEqualTimeIntervalsConstraints()

            dircol.AddConstraintToAllKnotPoints(u[0] <= 0.5 * self.omegamax)
            dircol.AddConstraintToAllKnotPoints(u[0] >= -0.5 * self.omegamax)
            dircol.AddConstraintToAllKnotPoints(u[1] <= 0.5 * self.umax)
            dircol.AddConstraintToAllKnotPoints(u[1] >= -0.5 * self.umax)

            eps = 0.0
            dircol.AddBoundingBoxConstraint(x0, x0, dircol.initial_state())
            dircol.AddBoundingBoxConstraint(xf - np.array([eps, eps, eps]),
                                            xf + np.array([eps, eps, eps]),
                                            dircol.final_state())

            R = 1.0 * np.eye(2)  # Cost on input "effort".
            dircol.AddRunningCost(u.transpose().dot(R.dot(u)))
            #dircol.AddRunningCost(R*u[0]**2)

            # Add a final cost equal to the total duration.
            dircol.AddFinalCost(dircol.time())

            initial_x_trajectory = \
             PiecewisePolynomial.FirstOrderHold([0., tf0], np.column_stack((x0, xf)))
            dircol.SetInitialTrajectory(PiecewisePolynomial(),
                                        initial_x_trajectory)

            result = Solve(dircol)
            print(result.get_solver_id().name())
            print(result.get_solution_result())
            assert (result.is_success())

            #import pdb; pdb.set_trace()
            xtraj = dircol.ReconstructStateTrajectory(result)
            utraj = dircol.ReconstructInputTrajectory(result)

            return utraj, xtraj
Пример #6
0
    def min_time_traj_dir_col(self, p0, v0, pf, vf):
        """generate minimum time trajectory while avoiding obs"""
        N = 15
        minT = self.params.dt / N
        maxT = 5.0 / N
        x0 = np.concatenate((p0, v0), axis=0)
        xf = np.concatenate((pf, vf), axis=0)

        prog = DirectCollocation(self.sys_c, self.sys_c.CreateDefaultContext(), num_time_samples=N,
                                 minimum_timestep=minT,
                                 maximum_timestep=maxT)
        prog.AddBoundingBoxConstraint(x0, x0, prog.initial_state())
        prog.AddEqualTimeIntervalsConstraints()
        self.add_input_limits(prog)
        self.add_arena_limits(prog)

        prog.AddQuadraticErrorCost(Q=10.0*np.eye(4), x_desired=xf, vars=prog.final_state())
        prog.AddFinalCost(prog.time())

        solver = SnoptSolver()
        result = solver.Solve(prog)
        if not result.is_success():
            print("Minimum time trajectory: optimization failed")
            return False, np.zeros((2, 1))

        # subsample trajectory accordingly
        u_trajectory = prog.ReconstructInputTrajectory(result)
        duration = u_trajectory.end_time() - u_trajectory.start_time()
        if duration > self.params.dt:
            times = np.linspace(u_trajectory.start_time(), u_trajectory.end_time(), (u_trajectory.end_time() - u_trajectory.start_time()) / self.params.dt )
        else:
            times = np.array([0])

        u_values = np.empty((2, len(times)))
        for i, t in enumerate(times):
            u_values[:, i] = u_trajectory.value(t).flatten()

        return result.is_success(), u_values
Пример #7
0
    def min_time_bounce_kick_traj_dir_col(self, p0, v0, p0_puck, v0_puck, v_puck_desired):
        """DO NOT USE. NOT WORKING.
        Minimum time trajectory + bounce kick off the wall."""
        N = 15
        minT = self.params.dt / N
        maxT = 5.0 / N
        x0 = np.concatenate((p0, v0), axis=0)
        prog = DirectCollocation(self.sys_c, self.sys_c.CreateDefaultContext(), num_time_samples=N,
                                 minimum_timestep=minT,
                                 maximum_timestep=maxT)
        prog.AddBoundingBoxConstraint(x0, x0, prog.initial_state())
        prog.AddEqualTimeIntervalsConstraints()
        self.add_final_state_constraint_elastic_collision(prog, p0_puck, v0_puck, v_puck_desired)
        self.add_input_limits(prog)
        self.add_arena_limits(prog)

        # prog.AddQuadraticErrorCost(Q=10.0*np.eye(4), x_desired=xf, vars=prog.final_state())
        pf = p0_puck - self.get_normalized_vector(v_puck_desired)*(self.params.puck_radius + self.params.player_radius)
        prog.AddQuadraticErrorCost(Q=10.0*np.eye(2), x_desired=pf, vars=prog.final_state()[:2])

        prog.AddFinalCost(prog.time())

        solver = SnoptSolver()
        result = solver.Solve(prog)
        if not result.is_success():
            print("Minimum time trajectory: optimization failed")
            return False, np.zeros((2, 1))

        u_trajectory = prog.ReconstructInputTrajectory(result)
        times = np.linspace(u_trajectory.start_time(), u_trajectory.end_time(), (u_trajectory.end_time() - u_trajectory.start_time()) / self.params.dt )

        u_values = np.empty((2, len(times)))
        for i, t in enumerate(times):
            u_values[:, i] = u_trajectory.value(t).flatten()

        return result.is_success(), u_values
Пример #8
0
def drake_trajectory_generation(file_name):
    global x_cmd_drake
    global u_cmd_drake
    print(file_name)
    Parser(plant).AddModelFromFile(file_name)
    plant.Finalize()
    context = plant.CreateDefaultContext()
    global dircol 
    dircol= DirectCollocation(
        plant,
        context,
        num_time_samples=11,
        minimum_timestep=0.1,
        maximum_timestep=0.4,
        input_port_index=plant.get_actuation_input_port().get_index())
    dircol.AddEqualTimeIntervalsConstraints()
    initial_state = (0., 0., 0., 0.)
    dircol.AddBoundingBoxConstraint(initial_state, initial_state,
                                dircol.initial_state())
    final_state = (0., math.pi, 0., 0.)
    dircol.AddBoundingBoxConstraint(final_state, final_state, dircol.final_state())
    R = 10  # Cost on input "effort".weight
    u = dircol.input()
    dircol.AddRunningCost(R * u[0]**2)
    # Add a final cost equal to the total duration.
    dircol.AddFinalCost(dircol.time())
    initial_x_trajectory = PiecewisePolynomial.FirstOrderHold(
        [0., 4.], np.column_stack((initial_state, final_state)))  # yapf: disable
    dircol.SetInitialTrajectory(PiecewisePolynomial(), initial_x_trajectory)
    dircol.AddConstraintToAllKnotPoints(dircol.input()[1] <= 0)
    dircol.AddConstraintToAllKnotPoints(dircol.input()[1] >= 0)
    global result
    global u_values
    result = Solve(dircol)
    assert result.is_success()
    #plotphase_portrait()
    fig1, ax1 = plt.subplots()
    u_trajectory = dircol.ReconstructInputTrajectory(result)
    u_knots = np.hstack([
         u_trajectory.value(t) for t in np.linspace(u_trajectory.start_time(),
                                                    u_trajectory.end_time(), 400)
    ])#here the u_knots now is 2x400 
    #u_trajectory = dircol.ReconstructInputTrajectory(result)
    times = np.linspace(u_trajectory.start_time(), u_trajectory.end_time(), 400)
    #u_lookup = np.vectorize(u_trajectory.value)
	#now we have ndarray of u_values with 400 points for 4 seconds w/ 100hz pub frequency
    #u_values = u_lookup(times)

    #ax1.plot(times, u_values)
    ax1.plot(times, u_knots[0])
    ax1.plot(times, u_knots[1])
    ax1.set_xlabel("time (seconds)")
    ax1.set_ylabel("force (Newtons)")
    ax1.set_title(' Direct collocation for Cartpole ')
    print('here2')
    plt.show()
    print('here3')
    #x_knots = np.hstack([
    #    x_trajectory.value(t) for t in np.linspace(x_trajectory.start_time(),
                                                 #  x_trajectory.end_time(), 100)
    #])
    x_trajectory = dircol.ReconstructStateTrajectory(result)
    x_knots = np.hstack([
        x_trajectory.value(t) for t in np.linspace(x_trajectory.start_time(),
                                                   x_trajectory.end_time(), 400)
    ])
    print(x_trajectory.start_time())
    print(x_trajectory.end_time())
   

    fig, ax = plt.subplots(4,1,figsize=(8,8))
    plt.subplots_adjust(wspace =0, hspace =0.4)
    #plt.tight_layout(3)#adjust total space
    ax[0].set_title('state of direct collocation for Cartpole')
    ax[0].plot(x_knots[0, :], x_knots[2, :], linewidth=2, color='b', linestyle='-')
    ax[0].set_xlabel("state_dot(theta1_dot and t|heta2_dot)")
    ax[0].set_ylabel("state(theta1 and theta2)");
    ax[0].plot(x_knots[1, :], x_knots[3, :],color='r',linewidth=2,linestyle='--')
    ax[0].legend(('theta1&theta1dot','theta2&theta2dot'));
    ax[1].set_title('input u(t) of direct collocation for Cartpole')
#    ax[1].plot(times,u_values, 'g')
    ax[1].plot(times, u_knots[0])
    ax[1].plot(times, u_knots[1])
    ax[1].legend(('input u(t)'))
    ax[1].set_xlabel("time")
    ax[1].set_ylabel("u(t)")
    ax[1].legend(('x joint ','thetajoint'))
    ax[1].set_title('input x(t) of direct collocation for Cartpole')
    ax[2].plot(times, x_knots[0, :])
    ax[2].set_xlabel("time")
    ax[2].set_ylabel("x(t)")
    ax[2].set_title('input theta(t) of direct collocation for Cartpole')
    ax[3].set_title('input theta(t) of direct collocation for Cartpole')
    ax[3].plot(times, x_knots[1, :])
    ax[3].set_xlabel("time")
    ax[3].set_ylabel("theta(t)")
    print('here4')
    plt.show()
    print('here5')
    x_cmd_drake=x_knots
    #return x_knots[0, :]#u_values
   # u_cmd_drake=u_values
    u_cmd_drake=u_knots
Пример #9
0
initial_x_trajectory = \
    PiecewisePolynomial.FirstOrderHold([0., 4.],
                                       np.column_stack((initial_state,
                                                        final_state)))
dircol.SetInitialTrajectory(PiecewisePolynomial(), initial_x_trajectory)

result = Solve(dircol)
print(result.get_solver_id().name())
print(result.get_solution_result())
assert (result.is_success())

x_trajectory = dircol.ReconstructStateTrajectory(result)

tree = RigidBodyTree(FindResource("acrobot/acrobot.urdf"),
                     FloatingBaseType.kFixed)
vis = PlanarRigidBodyVisualizer(tree, xlim=[-4., 4.], ylim=[-4., 4.])
ani = vis.animate(x_trajectory, repeat=True)

u_trajectory = dircol.ReconstructInputTrajectory(result)
times = np.linspace(u_trajectory.start_time(), u_trajectory.end_time(), 100)
u_lookup = np.vectorize(u_trajectory.value)
u_values = u_lookup(times)

plt.figure()
plt.plot(times, u_values)
plt.xlabel('time (seconds)')
plt.ylabel('force (Newtons)')

plt.show()
Пример #10
0
    print("Solving....")
    result = Solve(prog)
    print("Solve complete")
    assert result.is_success()
    print("Solver found solution!")

    # Set up finite-horizon LQR
    fh_lqr_context = fh_lqr_plant.CreateDefaultContext()
    fh_lqr_plant.get_input_port(0).FixValue(fh_lqr_context, u_bar)
    fh_lqr_context.SetContinuousState(x_bar)
    Q = np.diag([100, 10, 10, 100, 1])
    R = np.diag([0.5, 0.5, 0.1])

    options = FiniteHorizonLinearQuadraticRegulatorOptions()
    options.x0 = prog.ReconstructStateTrajectory(result)
    options.u0 = prog.ReconstructInputTrajectory(result)
    options.Qf = Q

    traj_x_values = options.x0.vector_values(options.x0.get_segment_times())
    traj_u_values = options.x0.vector_values(options.u0.get_segment_times())

    plt.figure()
    plt.subplot(321)
    plt.plot(options.x0.get_segment_times(), traj_x_values[0, :])
    plt.axhline(r_bar, color='gray', linestyle='--')
    plt.xlabel("$t$")
    plt.ylabel("$r$")

    plt.subplot(322)
    plt.plot(options.x0.get_segment_times(), traj_x_values[1, :])
    plt.axhline(0, color='gray', linestyle='--')
    def get_initial_guess(self, x_p1, p_goal, p_puck, obstacles):
        """This is basically the single-agent MPC algorithm"""
        hit_dir = p_goal - p_puck
        hit_dir = 6.0 * hit_dir / np.linalg.norm(hit_dir)
        x_des = np.array([p_puck[0], p_puck[1], hit_dir[0], hit_dir[1]])
        #x_des = np.array([1.0, 1.0, 0, 0])
        print("x_des: {}, {}".format(x_des[0], x_des[1]))
        print("x_des shape", x_des.shape)
        print("zeros.shape", np.zeros(4).shape)
        print("p_player", x_p1[0:2])
        print("p_puck {}, {}".format(p_puck[0], p_puck[1]))
        print("p_goal", p_goal)
        prog = DirectCollocation(self.mpc_params.sys_c,
                                 self.mpc_params.sys_c.CreateDefaultContext(),
                                 self.mpc_params.N + 1,
                                 minimum_timestep=self.mpc_params.minT,
                                 maximum_timestep=self.mpc_params.maxT)

        prog.AddBoundingBoxConstraint(x_p1, x_p1, prog.initial_state())
        prog.AddQuadraticErrorCost(Q=self.mpc_params.Omega_N_max,
                                   x_desired=x_des,
                                   vars=prog.final_state())

        prog.AddEqualTimeIntervalsConstraints()

        # generate trajectory non in collision with puck
        #for n in range(self.mpc_params.N):
        #    x = prog.state()
        #    eps = 0.1
        #    obs_pos = p_puck[0:2]
        #    prog.AddConstraintToAllKnotPoints((x[0:2]-obs_pos).dot(x[0:2]-obs_pos) >= (self.sim_params.player_radius + self.sim_params.puck_radius - eps)**2)

        for obs_pos in obstacles:
            for n in range(self.mpc_params.N):
                x = prog.state()
                prog.AddConstraintToAllKnotPoints(
                    (x[0:2] - obs_pos).dot(x[0:2] - obs_pos) >= (
                        2.0 * self.sim_params.player_radius)**2)

        prog.AddConstraintToAllKnotPoints(
            prog.input()[0] <= self.sim_params.input_limit)
        prog.AddConstraintToAllKnotPoints(
            prog.input()[0] >= -self.sim_params.input_limit)
        prog.AddConstraintToAllKnotPoints(
            prog.input()[1] <= self.sim_params.input_limit)
        prog.AddConstraintToAllKnotPoints(
            prog.input()[1] >= -self.sim_params.input_limit)

        r = self.sim_params.player_radius
        prog.AddConstraintToAllKnotPoints(
            prog.state()[0] + r <= self.sim_params.arena_limits_x / 2.0)
        prog.AddConstraintToAllKnotPoints(
            prog.state()[0] - r >= -self.sim_params.arena_limits_x / 2.0)
        prog.AddConstraintToAllKnotPoints(
            prog.state()[1] + r <= self.sim_params.arena_limits_y / 2.0)
        prog.AddConstraintToAllKnotPoints(
            prog.state()[1] - r >= -self.sim_params.arena_limits_y / 2.0)

        prog.AddFinalCost(prog.time())

        if not self.prev_u is None and not self.prev_x is None:
            prog.SetInitialTrajectory(traj_init_u=self.prev_u,
                                      traj_init_x=self.prev_x)

        solver = SnoptSolver()
        result = solver.Solve(prog)

        u_traj = prog.ReconstructInputTrajectory(result)
        x_traj = prog.ReconstructStateTrajectory(result)

        self.prev_u = u_traj
        self.prev_x = x_traj

        u_vals = u_traj.vector_values(u_traj.get_segment_times())
        x_vals = x_traj.vector_values(x_traj.get_segment_times())
        print(u_vals)
        print(u_vals[:, 0])
        return u_vals[:, 0]
Пример #12
0
# Solve the problem
print("Solving trajectory optimization")
start = timeit.default_timer()
result = solver.Solve(prog)
stop = timeit.default_timer()
print("Elapsed Time: ", stop - start)
# Get the details  of the solution
print("Optimization successful? ", result.is_success())
print('solver is: ', result.get_solver_id().name())
print('optimal cost = ', result.get_optimal_cost())
# Get the exit code from SNOPT
details = result.get_solver_details()
print('SNOPT Exit Status: ', details.info)

# Unpack the trajectories
u_traj = prog.ReconstructInputTrajectory(result)
x_traj = prog.ReconstructStateTrajectory(result)

time = np.linspace(u_traj.start_time(), u_traj.end_time(), 101)
u_lookup = np.vectorize(u_traj.value)
u = u_lookup(time)
x = np.hstack([x_traj.value(t) for t in time])
# Plot the trajectory
plt.figure()
plt.subplot(3, 1, 1)
plt.plot(time, x[0, :], label="shoulder")
plt.plot(time, x[1, :], label="elbow")
plt.legend()
plt.ylabel('Positions (rad)')
plt.subplot(3, 1, 2)
plt.plot(time, x[2, :])
Пример #13
0
def direct_collocation_zhao_glider():
    print("Running direct collocation")

    plant = SlotineGlider()
    context = plant.CreateDefaultContext()

    N = 21
    initial_guess = True
    max_dt = 0.5
    max_tf = N * max_dt
    dircol = DirectCollocation(
        plant,
        context,
        num_time_samples=N,
        minimum_timestep=0.05,
        maximum_timestep=max_dt,
    )

    # Constrain all timesteps, $h[k]$, to be equal, so the trajectory breaks are evenly distributed.
    dircol.AddEqualTimeIntervalsConstraints()

    # Add input constraints
    u = dircol.input()
    dircol.AddConstraintToAllKnotPoints(0 <= u[0])
    dircol.AddConstraintToAllKnotPoints(u[0] <= 3)
    dircol.AddConstraintToAllKnotPoints(-np.pi / 2 <= u[1])
    dircol.AddConstraintToAllKnotPoints(u[1] <= np.pi / 2)

    # Add state constraints
    x = dircol.state()
    min_speed = 5
    dircol.AddConstraintToAllKnotPoints(x[0] >= min_speed)
    min_height = 0.5
    dircol.AddConstraintToAllKnotPoints(x[3] >= min_height)

    # Add initial state
    travel_angle = (3 / 2) * np.pi
    h0 = 10
    dir_vector = np.array([np.cos(travel_angle), np.sin(travel_angle)])

    # Start at initial position
    x0_pos = np.array([h0, 0, 0])
    dircol.AddBoundingBoxConstraint(x0_pos, x0_pos,
                                    dircol.initial_state()[3:6])

    # Periodicity constraints
    dircol.AddLinearConstraint(
        dircol.final_state()[0] == dircol.initial_state()[0])
    dircol.AddLinearConstraint(
        dircol.final_state()[1] == dircol.initial_state()[1])
    dircol.AddLinearConstraint(
        dircol.final_state()[2] == dircol.initial_state()[2])
    dircol.AddLinearConstraint(
        dircol.final_state()[3] == dircol.initial_state()[3])

    # Always end in right direction
    # NOTE this assumes that we always are starting in origin
    if travel_angle % np.pi == 0:  # Travel along x-axis
        dircol.AddConstraint(
            dircol.final_state()[5] == dircol.initial_state()[5])
    elif travel_angle % ((1 / 2) * np.pi) == 0:  # Travel along y-axis
        dircol.AddConstraint(
            dircol.final_state()[4] == dircol.initial_state()[4])
    else:
        dircol.AddConstraint(
            dircol.final_state()[5] == dircol.final_state()[4] *
            np.tan(travel_angle))

    # Maximize distance travelled in desired direction
    p0 = dircol.initial_state()
    p1 = dircol.final_state()
    Q = 1
    dist_travelled = np.array([p1[4], p1[5]])  # NOTE assume starting in origin
    dircol.AddFinalCost(-(dir_vector.T.dot(dist_travelled)) * Q)

    if True:
        # Cost on input effort
        R = 0.1
        dircol.AddRunningCost(R * (u[0])**2 + R * u[1]**2)

    # Initial guess is a straight line from x0 in direction
    if initial_guess:
        avg_vel_guess = 10  # Guess for initial velocity
        x0_guess = np.array([avg_vel_guess, travel_angle, 0, h0, 0, 0])

        guessed_total_dist_travelled = 200
        xf_guess = np.array([
            avg_vel_guess,
            travel_angle,
            0,
            h0,
            dir_vector[0] * guessed_total_dist_travelled,
            dir_vector[1] * guessed_total_dist_travelled,
        ])
        initial_x_trajectory = PiecewisePolynomial.FirstOrderHold(
            [0.0, 4.0], np.column_stack((x0_guess, xf_guess)))
        dircol.SetInitialTrajectory(PiecewisePolynomial(),
                                    initial_x_trajectory)

    # Solve direct collocation
    result = Solve(dircol)
    assert result.is_success()
    print("Found a solution!")

    # PLOTTING
    N_plot = 200

    # Plot trajectory
    x_trajectory = dircol.ReconstructStateTrajectory(result)
    times = np.linspace(x_trajectory.start_time(), x_trajectory.end_time(),
                        N_plot)
    x_knots = np.hstack([x_trajectory.value(t) for t in times])
    z = x_knots[3, :]
    x = x_knots[4, :]
    y = x_knots[5, :]
    plot_trj_3_wind(np.vstack((x, y, z)).T, dir_vector)

    # Plot input
    u_trajectory = dircol.ReconstructInputTrajectory(result)
    u_knots = np.hstack([u_trajectory.value(t) for t in times])

    plot_input_zhao_glider(times, u_knots.T)

    plt.show()
    return 0
Пример #14
0
    def _solve_traj_opt(self, initial_state, constrain_final_state=True, duration_bounds=None, d=0.0, verbose=False):
        '''Finds a trajectory from an initial state, optionally to a final state.
        
        Args: 
            initial_state (tuple): the initial state
            final_state (tuple): the final state (default to None, final state unconstrained)
            duration (tuple): the min and max duration of the trajectory (default to None, 
                              no duration constraints)
            d (float): constant disturbance force
            verbose (bool): enables/disables verbose output

        Returns:
            pydrake.trajectories.PiecewisePolynomial: the planned trajectory
            float: the cost of the planned trajectory

        Raises:
            RuntimeError: raised if the optimization fails
        '''

        print("Initial state: {}\nFinal state: {}\nMin duration: {} s\nMax duration: {} s".format(
            initial_state, constrain_final_state, duration_bounds[0], duration_bounds[1]))

        traj_opt = DirectCollocation(self.plant, self.context, 
                                     self.opt_params['num_time_samples'],
                                     self.opt_params['minimum_timestep'],
                                     self.opt_params['maximum_timestep'])

        traj_opt.AddEqualTimeIntervalsConstraints()

        # Add bounds on the total duration of the trajectory
        if duration_bounds:
            traj_opt.AddDurationBounds(duration_bounds[0], duration_bounds[1])

        # TODO make input limits a paramter
        limits_low = [-15., -15.]
        limits_upp = [15., 15.]

        x = traj_opt.state()
        u = traj_opt.input()
        t = traj_opt.time()
        # TODO assuming disturbance is at the last index
        for i in range(len(u) - 1):
            traj_opt.AddConstraintToAllKnotPoints(limits_low[i] <= u[i])
            traj_opt.AddConstraintToAllKnotPoints(u[i] <= limits_upp[i])

        traj_opt.AddConstraintToAllKnotPoints(u[len(u) - 1] == d)

        for signed_dist_func in self.signed_dist_funcs:
            traj_opt.AddConstraintToAllKnotPoints(signed_dist_func(x) >= 0)

        traj_opt.AddRunningCost(traj_opt.timestep(0) * self.running_cost(x, u, t))

        traj_opt.AddFinalCost(self.final_cost(x, u, t))

        # Add initial and final state constraints
        traj_opt.AddBoundingBoxConstraint(initial_state, initial_state,
                                          traj_opt.initial_state())

        if self.final_state_constraint and constrain_final_state:
            traj_opt.AddConstraint(self.final_state_constraint(traj_opt.final_state()) == 0)

        # # TODO this is redundant with the final state equality constraint above
        # if final_state:
        #     traj_opt.AddBoundingBoxConstraint(final_state, final_state,
        #                                       traj_opt.final_state())

        #     initial_x_trajectory = PiecewisePolynomial.FirstOrderHold([0., 0.4 * 21],
        #                                                               np.column_stack((initial_state,
        #                                                                                final_state)))
        #     traj_opt.SetInitialTrajectory(PiecewisePolynomial(), initial_x_trajectory)
        # else:
        #     initial_x_trajectory = PiecewisePolynomial.FirstOrderHold([0., 0.4 * 21],
        #                                                               np.column_stack((initial_state,
        #                                                                                initial_state)))
        #     traj_opt.SetInitialTrajectory(PiecewisePolynomial(), initial_x_trajectory)

        initial_x_trajectory = PiecewisePolynomial.FirstOrderHold([0., 0.4 * 21],
                                                                  np.column_stack((initial_state,
                                                                                   initial_state)))
        traj_opt.SetInitialTrajectory(PiecewisePolynomial(), initial_x_trajectory)

        result = traj_opt.Solve()

        if result != SolutionResult.kSolutionFound:
            raise RuntimeError('Direct collocation failed from initial state {}!'.format(initial_state))

        state_samples = traj_opt.GetStateSamples()
        input_samples = traj_opt.GetInputSamples()
        time_samples = traj_opt.GetSampleTimes()

        # for debugging
        hs = [time_samples[i+1] - time_samples[i] for i in range(len(time_samples)) if i < len(time_samples) - 1]
        #print(hs)

        total_cost = 0.
        for k in range(state_samples.shape[1]):
            total_cost += (hs[0] * 
                           self.running_cost(state_samples[:, k], 
                                             input_samples[:, k], 
                                             time_samples[k]))
            if verbose:
                for i, phi in enumerate(self.signed_dist_funcs):
                    print("\tsigned dist {}: {}".format(i, signed_dist_func(state_samples[:, k])))

        if verbose:
            print("Total cost is {}".format(total_cost))

            u_traj = traj_opt.ReconstructInputTrajectory()
            times = np.linspace(u_traj.start_time(), u_traj.end_time(), 100)
            u_lookup = np.vectorize(lambda t: u_traj.value(t)[0])
            u_values = u_lookup(times)

            plt.figure()
            plt.plot(times, u_values)
            plt.xlabel('time (seconds)')
            plt.ylabel('force (Newtons)')

            plt.show()

        return traj_opt.ReconstructStateTrajectory(), total_cost