Пример #1
0
 def test_pose_vector(self):
     value = PoseVector()
     self.assertTrue(isinstance(value, BasicVector))
     self.assertTrue(isinstance(copy.copy(value), PoseVector))
     self.assertTrue(isinstance(value.Clone(), PoseVector))
     self.assertEquals(value.size(), PoseVector.kSize)
     # - Accessors.
     self.assertTrue(isinstance(
         value.get_isometry(), Isometry3))
     self.assertTrue(isinstance(
         value.get_rotation(), Quaternion))
     self.assertTrue(isinstance(
         value.get_translation(), np.ndarray))
     # - - Value.
     self.assertTrue(np.allclose(
         value.get_isometry().matrix(), np.eye(4, 4)))
     # - Mutators.
     p = [0, 1, 2]
     q = Quaternion(wxyz=normalized([0.1, 0.3, 0.7, 0.9]))
     X_expected = Isometry3(q, p)
     value.set_translation(p)
     value.set_rotation(q)
     self.assertTrue(np.allclose(
         value.get_isometry().matrix(), X_expected.matrix()))
     # - Ensure ordering is ((px, py, pz), (qw, qx, qy, qz))
     vector_expected = np.hstack((p, q.wxyz()))
     vector_actual = value.get_value()
     self.assertTrue(np.allclose(vector_actual, vector_expected))
Пример #2
0
 def test_roll_pitch_yaw(self):
     rpy = mut.RollPitchYaw(rpy=[0, 0, 0])
     self.assertTrue(np.allclose(rpy.vector(), [0, 0, 0]))
     rpy = mut.RollPitchYaw(roll=0, pitch=0, yaw=0)
     self.assertTupleEqual(
         (rpy.get_roll_angle(), rpy.get_pitch_angle(), rpy.get_yaw_angle()),
         (0, 0, 0))
     q_I = Quaternion()
     self.assertTrue(np.allclose(rpy.ToQuaternion().wxyz(), q_I.wxyz()))
Пример #3
0
    def test_AddOrientationConstraint(self):
        theta_bound = 0.2 * math.pi
        self.ik_two_bodies.AddOrientationConstraint(
            frameA=self.body1_frame, frameB=self.body2_frame,
            theta_bound=theta_bound)
        result = self.prog.Solve()
        self.assertEqual(result, mp.SolutionResult.kSolutionFound)

        q_val = self.prog.GetSolution(self.q)

        body1_quat = self._body1_quat(q_val)
        body2_quat = self._body2_quat(q_val)
        body1_rotmat = Quaternion(body1_quat).rotation()
        body2_rotmat = Quaternion(body2_quat).rotation()
        R_AB = body1_rotmat.transpose().dot(body2_rotmat)
        self.assertGreater(R_AB.trace(), 1 + 2 * math.cos(theta_bound) - 1E-6)
Пример #4
0
 def test_pose_bundle(self):
     num_poses = 7
     bundle = PoseBundle(num_poses)
     # - Accessors.
     self.assertEqual(bundle.get_num_poses(), num_poses)
     self.assertTrue(isinstance(bundle.get_pose(0), Isometry3))
     self.assertTrue(isinstance(bundle.get_velocity(0), FrameVelocity))
     # - Mutators.
     kIndex = 5
     p = [0, 1, 2]
     q = Quaternion(wxyz=normalized([0.1, 0.3, 0.7, 0.9]))
     bundle.set_pose(kIndex, Isometry3(q, p))
     w = [0.1, 0.3, 0.5]
     v = [0., 1., 2.]
     frame_velocity = FrameVelocity(SpatialVelocity(w=w, v=v))
     bundle.set_velocity(kIndex, frame_velocity)
     self.assertTrue(
         (bundle.get_pose(kIndex).matrix() == Isometry3(q,
                                                        p).matrix()).all())
     vel_actual = bundle.get_velocity(kIndex).get_velocity()
     self.assertTrue(np.allclose(vel_actual.rotational(), w))
     self.assertTrue(np.allclose(vel_actual.translational(), v))
     name = "Alice"
     bundle.set_name(kIndex, name)
     self.assertEqual(bundle.get_name(kIndex), name)
     instance_id = 42  # Supply a random instance id.
     bundle.set_model_instance_id(kIndex, instance_id)
     self.assertEqual(bundle.get_model_instance_id(kIndex), instance_id)
Пример #5
0
 def test_roll_pitch_yaw(self):
     # - Constructors.
     rpy = mut.RollPitchYaw(rpy=[0, 0, 0])
     self.assertTrue(np.allclose(rpy.vector(), [0, 0, 0]))
     rpy = mut.RollPitchYaw(roll=0, pitch=0, yaw=0)
     self.assertTupleEqual(
         (rpy.roll_angle(), rpy.pitch_angle(), rpy.yaw_angle()), (0, 0, 0))
     rpy = mut.RollPitchYaw(R=mut.RotationMatrix())
     self.assertTrue(np.allclose(rpy.vector(), [0, 0, 0]))
     q_I = Quaternion()
     rpy_q_I = mut.RollPitchYaw(quaternion=q_I)
     self.assertTrue(np.allclose(rpy_q_I.vector(), [0, 0, 0]))
     # - Additional properties.
     self.assertTrue(np.allclose(rpy.ToQuaternion().wxyz(), q_I.wxyz()))
     R = rpy.ToRotationMatrix().matrix()
     self.assertTrue(np.allclose(R, np.eye(3)))
Пример #6
0
 def test_roll_pitch_yaw(self):
     # - Constructors.
     rpy = mut.RollPitchYaw(rpy=[0, 0, 0])
     self.assertTrue(np.allclose(rpy.vector(), [0, 0, 0]))
     rpy = mut.RollPitchYaw(roll=0, pitch=0, yaw=0)
     self.assertTupleEqual(
         (rpy.roll_angle(), rpy.pitch_angle(), rpy.yaw_angle()),
         (0, 0, 0))
     rpy = mut.RollPitchYaw(R=mut.RotationMatrix())
     self.assertTrue(np.allclose(rpy.vector(), [0, 0, 0]))
     q_I = Quaternion()
     rpy_q_I = mut.RollPitchYaw(quaternion=q_I)
     self.assertTrue(np.allclose(rpy_q_I.vector(), [0, 0, 0]))
     # - Additional properties.
     self.assertTrue(np.allclose(rpy.ToQuaternion().wxyz(), q_I.wxyz()))
     R = rpy.ToRotationMatrix().matrix()
     self.assertTrue(np.allclose(R, np.eye(3)))
Пример #7
0
 def test_rotation_matrix(self):
     R = mut.RotationMatrix()
     self.assertTrue(np.allclose(R.matrix(), np.eye(3)))
     self.assertTrue(
         np.allclose(mut.RotationMatrix.Identity().matrix(), np.eye(3)))
     R = mut.RotationMatrix(quaternion=Quaternion.Identity())
     self.assertTrue(np.allclose(R.matrix(), np.eye(3)))
     R = mut.RotationMatrix(rpy=mut.RollPitchYaw(rpy=[0, 0, 0]))
     self.assertTrue(np.allclose(R.matrix(), np.eye(3)))
     # - Nontrivial quaternion.
     q = Quaternion(wxyz=[0.5, 0.5, 0.5, 0.5])
     R = mut.RotationMatrix(quaternion=q)
     q_R = R.ToQuaternion()
     self.assertTrue(np.allclose(q.wxyz(), q_R.wxyz()))
     # - Inverse.
     R_I = R.inverse().multiply(R)
     self.assertTrue(np.allclose(R_I.matrix(), np.eye(3)))
Пример #8
0
 def test_rotation_matrix(self):
     R = mut.RotationMatrix()
     self.assertTrue(np.allclose(R.matrix(), np.eye(3)))
     self.assertTrue(np.allclose(
         mut.RotationMatrix.Identity().matrix(), np.eye(3)))
     R = mut.RotationMatrix(quaternion=Quaternion.Identity())
     self.assertTrue(np.allclose(R.matrix(), np.eye(3)))
     R = mut.RotationMatrix(rpy=mut.RollPitchYaw(rpy=[0, 0, 0]))
     self.assertTrue(np.allclose(R.matrix(), np.eye(3)))
     # - Nontrivial quaternion.
     q = Quaternion(wxyz=[0.5, 0.5, 0.5, 0.5])
     R = mut.RotationMatrix(quaternion=q)
     q_R = R.ToQuaternion()
     self.assertTrue(np.allclose(q.wxyz(), q_R.wxyz()))
     # - Inverse.
     R_I = R.inverse().multiply(R)
     self.assertTrue(np.allclose(R_I.matrix(), np.eye(3)))
Пример #9
0
    def test_AddGazeTargetConstraint(self):
        p_AS = np.array([0.1, 0.2, 0.3])
        n_A = np.array([0.3, 0.5, 1.2])
        p_BT = np.array([1.1, 0.2, 1.5])
        cone_half_angle = 0.2 * math.pi

        self.ik_two_bodies.AddGazeTargetConstraint(
            frameA=self.body1_frame, p_AS=p_AS, n_A=n_A,
            frameB=self.body2_frame, p_BT=p_BT,
            cone_half_angle=cone_half_angle)
        result = self.prog.Solve()
        self.assertEqual(result, mp.SolutionResult.kSolutionFound)

        q_val = self.prog.GetSolution(self.q)
        body1_quat = self._body1_quat(q_val)
        body1_pos = self._body1_xyz(q_val)
        body2_quat = self._body2_quat(q_val)
        body2_pos = self._body2_xyz(q_val)
        body1_rotmat = Quaternion(body1_quat).rotation()
        body2_rotmat = Quaternion(body2_quat).rotation()

        p_WS = body1_pos + body1_rotmat.dot(p_AS)
        p_WT = body2_pos + body2_rotmat.dot(p_BT)
        p_ST_W = p_WT - p_WS
        n_W = body1_rotmat.dot(n_A)
        self.assertGreater(p_ST_W.dot(n_W), np.linalg.norm(
            p_ST_W) * np.linalg.norm(n_W) * math.cos(cone_half_angle) - 1E-6)
Пример #10
0
    def test_pose_selector(self):
        kScanDistance = 4.
        rg = make_two_lane_road()
        lane = rg.junction(0).segment(0).lane(0)
        pose0 = PoseVector()
        pose0.set_translation([1., 0., 0.])
        pose1 = PoseVector()
        # N.B. Set pose1 3 meters ahead of pose0.
        pose1.set_translation([4., 0., 0.])

        bundle = PoseBundle(num_poses=2)
        bundle.set_pose(0, Isometry3(Quaternion(), pose0.get_translation()))
        bundle.set_pose(1, Isometry3(Quaternion(), pose1.get_translation()))

        closest_pose = PoseSelector.FindSingleClosestPose(
            lane=lane, ego_pose=pose0, traffic_poses=bundle,
            scan_distance=kScanDistance, side=AheadOrBehind.kAhead,
            path_or_branches=ScanStrategy.kPath)
        self.assertEqual(closest_pose.odometry.lane.id().string(),
                         lane.id().string())
        self.assertTrue(closest_pose.distance == 3.)

        closest_pair = PoseSelector.FindClosestPair(
            lane=lane, ego_pose=pose0, traffic_poses=bundle,
            scan_distance=kScanDistance, path_or_branches=ScanStrategy.kPath)
        self.assertEqual(
            closest_pair[AheadOrBehind.kAhead].odometry.lane.id().string(),
            lane.id().string())
        self.assertEqual(closest_pair[AheadOrBehind.kAhead].distance, 3.)
        self.assertEqual(
            closest_pair[AheadOrBehind.kBehind].odometry.lane.id().string(),
            lane.id().string())
        self.assertEqual(closest_pair[AheadOrBehind.kBehind].distance,
                         float('inf'))

        lane_pos = LanePosition(s=1., r=0., h=0.)
        road_pos = RoadPosition(lane=lane, pos=lane_pos)
        w = [1., 2., 3.]
        v = [-4., -5., -6.]
        frame_velocity = FrameVelocity(SpatialVelocity(w=w, v=v))
        road_odom = RoadOdometry(
            road_position=road_pos, frame_velocity=frame_velocity)
        sigma_v = PoseSelector.GetSigmaVelocity(road_odom)
        self.assertEqual(sigma_v, v[0])
Пример #11
0
    def test_AddPositionConstraint(self):
        p_BQ = np.array([0.2, 0.3, 0.5])
        p_AQ_lower = np.array([-0.1, -0.2, -0.3])
        p_AQ_upper = np.array([-0.05, -0.12, -0.28])

        self.ik_two_bodies.AddPositionConstraint(
            frameB=self.body1_frame, p_BQ=p_BQ,
            frameA=self.body2_frame,
            p_AQ_lower=p_AQ_lower, p_AQ_upper=p_AQ_upper)
        result = self.prog.Solve()
        self.assertEqual(result, mp.SolutionResult.kSolutionFound)
        q_val = self.prog.GetSolution(self.q)

        body1_quat = self._body1_quat(q_val)
        body1_pos = self._body1_xyz(q_val)
        body2_quat = self._body2_quat(q_val)
        body2_pos = self._body2_xyz(q_val)
        body1_rotmat = Quaternion(body1_quat).rotation()
        body2_rotmat = Quaternion(body2_quat).rotation()
        p_AQ = body2_rotmat.transpose().dot(
            body1_rotmat.dot(p_BQ) + body1_pos - body2_pos)
        self.assertTrue(np.greater(p_AQ, p_AQ_lower -
                                   1E-6 * np.ones((3, 1))).all())
        self.assertTrue(np.less(p_AQ, p_AQ_upper +
                                1E-6 * np.ones((3, 1))).all())
Пример #12
0
    def test_AddAngleBetweenVectorsConstraint(self):
        na_A = np.array([0.2, -0.4, 0.9])
        nb_B = np.array([1.4, -0.1, 1.8])

        angle_lower = 0.2 * math.pi
        angle_upper = 0.2 * math.pi

        self.ik_two_bodies.AddAngleBetweenVectorsConstraint(
            frameA=self.body1_frame, na_A=na_A,
            frameB=self.body2_frame, nb_B=nb_B,
            angle_lower=angle_lower, angle_upper=angle_upper)
        result = self.prog.Solve()
        self.assertEqual(result, mp.SolutionResult.kSolutionFound)

        q_val = self.prog.GetSolution(self.q)
        body1_quat = self._body1_quat(q_val)
        body2_quat = self._body2_quat(q_val)
        body1_rotmat = Quaternion(body1_quat).rotation()
        body2_rotmat = Quaternion(body2_quat).rotation()

        na_W = body1_rotmat.dot(na_A)
        nb_W = body2_rotmat.dot(nb_B)

        angle = math.acos(na_W.transpose().dot(nb_W) /
                          (np.linalg.norm(na_W) * np.linalg.norm(nb_W)))

        self.assertLess(math.fabs(angle - angle_lower), 1E-6)
Пример #13
0
    def test_idm_controller(self):
        rg = make_two_lane_road()
        idm = IdmController(
            road=rg,
            path_or_branches=ScanStrategy.kPath,
            road_position_strategy=RoadPositionStrategy.kExhaustiveSearch,
            period_sec=0.)
        context = idm.CreateDefaultContext()
        output = idm.AllocateOutput()

        # Fix the inputs.
        pose_vector1 = PoseVector()
        pose_vector1.set_translation([1., 2., 3.])
        ego_pose_index = idm.ego_pose_input().get_index()
        context.FixInputPort(ego_pose_index, pose_vector1)

        w = [0., 0., 0.]
        v = [1., 0., 0.]
        frame_velocity1 = FrameVelocity(SpatialVelocity(w=w, v=v))
        ego_velocity_index = idm.ego_velocity_input().get_index()
        context.FixInputPort(ego_velocity_index, frame_velocity1)

        pose_vector2 = PoseVector()
        pose_vector2.set_translation([6., 0., 0.])
        bundle = PoseBundle(num_poses=1)
        bundle.set_pose(
            0, Isometry3(Quaternion(), pose_vector2.get_translation()))
        traffic_index = idm.traffic_input().get_index()
        context.FixInputPort(traffic_index,
                             framework.AbstractValue.Make(bundle))

        # Verify the inputs.
        pose_vector_eval = idm.EvalVectorInput(context, 0)
        self.assertTrue(
            np.allclose(pose_vector1.get_translation(),
                        pose_vector_eval.get_translation()))
        frame_velocity_eval = idm.EvalVectorInput(context, 1)
        self.assertTrue(
            np.allclose(frame_velocity1.get_velocity().translational(),
                        frame_velocity_eval.get_velocity().translational()))
        self.assertTrue(
            np.allclose(frame_velocity1.get_velocity().rotational(),
                        frame_velocity_eval.get_velocity().rotational()))

        # Verify the outputs.
        idm.CalcOutput(context, output)
        accel_command_index = idm.acceleration_output().get_index()
        accel = output.get_vector_data(accel_command_index)
        self.assertEqual(len(accel.get_value()), 1)
        self.assertTrue(accel.get_value() < 0.)
Пример #14
0
    def test_rigid_transform(self):
        def check_equality(X_actual, X_expected_matrix):
            # TODO(eric.cousineau): Use `IsNearlyEqualTo`.
            self.assertIsInstance(X_actual, mut.RigidTransform)
            self.assertTrue(
                np.allclose(X_actual.GetAsMatrix4(), X_expected_matrix))

        # - Constructors.
        X_I = np.eye(4)
        check_equality(mut.RigidTransform(), X_I)
        check_equality(mut.RigidTransform(other=mut.RigidTransform()), X_I)
        R_I = mut.RotationMatrix()
        p_I = np.zeros(3)
        rpy_I = mut.RollPitchYaw(0, 0, 0)
        quaternion_I = Quaternion.Identity()
        angle = np.pi * 0
        axis = [0, 0, 1]
        angle_axis = AngleAxis(angle=angle, axis=axis)
        check_equality(mut.RigidTransform(R=R_I, p=p_I), X_I)
        check_equality(mut.RigidTransform(rpy=rpy_I, p=p_I), X_I)
        check_equality(mut.RigidTransform(quaternion=quaternion_I, p=p_I), X_I)
        check_equality(mut.RigidTransform(theta_lambda=angle_axis, p=p_I), X_I)
        check_equality(mut.RigidTransform(R=R_I), X_I)
        check_equality(mut.RigidTransform(p=p_I), X_I)
        # - Accessors, mutators, and general methods.
        X = mut.RigidTransform()
        X.set(R=R_I, p=p_I)
        X.SetFromIsometry3(pose=Isometry3.Identity())
        check_equality(mut.RigidTransform.Identity(), X_I)
        self.assertIsInstance(X.rotation(), mut.RotationMatrix)
        X.set_rotation(R=R_I)
        self.assertIsInstance(X.translation(), np.ndarray)
        X.set_translation(p=np.zeros(3))
        self.assertTrue(np.allclose(X.GetAsMatrix4(), X_I))
        self.assertTrue(np.allclose(X.GetAsMatrix34(), X_I[:3]))
        self.assertIsInstance(X.GetAsIsometry3(), Isometry3)
        check_equality(X.inverse(), X_I)
        self.assertIsInstance(X.multiply(other=mut.RigidTransform()),
                              mut.RigidTransform)
        self.assertIsInstance(X.multiply(p_BoQ_B=p_I), np.ndarray)
Пример #15
0
    def test_AddOrientationConstraint(self):
        theta_bound = 0.2 * math.pi
        R_AbarA = pydrake.math.RotationMatrix(
            quaternion=Quaternion(0.5, -0.5, 0.5, 0.5))
        R_BbarB = pydrake.math.RotationMatrix(
            quaternion=Quaternion(1.0 / 3, 2.0 / 3, 0, 2.0 / 3))
        self.ik_two_bodies.AddOrientationConstraint(
            frameAbar=self.body1_frame, R_AbarA=R_AbarA,
            frameBbar=self.body2_frame, R_BbarB=R_BbarB,
            theta_bound=theta_bound)
        result = self.prog.Solve()
        self.assertEqual(result, mp.SolutionResult.kSolutionFound)

        q_val = self.prog.GetSolution(self.q)

        body1_quat = self._body1_quat(q_val)
        body2_quat = self._body2_quat(q_val)
        body1_rotmat = Quaternion(body1_quat).rotation()
        body2_rotmat = Quaternion(body2_quat).rotation()
        R_AbarBbar = body1_rotmat.transpose().dot(body2_rotmat)
        R_AB = R_AbarA.matrix().transpose().dot(
            R_AbarBbar.dot(R_BbarB.matrix()))
        self.assertGreater(R_AB.trace(), 1 + 2 * math.cos(theta_bound) - 1E-6)
Пример #16
0
    def test_pose_aggregator(self):
        aggregator = PoseAggregator()
        # - Set-up.
        instance_id1 = 5  # Supply a random instance id.
        port1 = aggregator.AddSingleInput("pose_only", instance_id1)
        self.assertEqual(port1.get_data_type(), PortDataType.kVectorValued)
        self.assertEqual(port1.size(), PoseVector.kSize)
        instance_id2 = 42  # Supply another random, but unique, id.
        ports2 = aggregator.AddSinglePoseAndVelocityInput(
            "pose_and_velocity", instance_id2)
        self.assertEqual(ports2.pose_input_port.get_data_type(),
                         PortDataType.kVectorValued)
        self.assertEqual(ports2.pose_input_port.size(), PoseVector.kSize)
        self.assertEqual(ports2.velocity_input_port.get_data_type(),
                         PortDataType.kVectorValued)
        self.assertEqual(ports2.velocity_input_port.size(),
                         FrameVelocity.kSize)
        num_poses = 1
        port3 = aggregator.AddBundleInput("pose_bundle", num_poses)
        self.assertEqual(port3.get_data_type(), PortDataType.kAbstractValued)

        # - CalcOutput.
        context = aggregator.CreateDefaultContext()
        output = aggregator.AllocateOutput()

        p1 = [0, 1, 2]
        pose1 = PoseVector()
        pose1.set_translation(p1)
        p2 = [5, 7, 9]
        pose2 = PoseVector()
        pose2.set_translation(p2)
        w = [0.3, 0.4, 0.5]
        v = [0.5, 0.6, 0.7]
        velocity = FrameVelocity()
        velocity.set_velocity(SpatialVelocity(w=w, v=v))
        p3 = [50, 70, 90]
        q3 = Quaternion(wxyz=normalized([0.1, 0.3, 0.7, 0.9]))
        bundle = PoseBundle(num_poses)
        bundle.set_pose(0, Isometry3(q3, p3))
        bundle_value = AbstractValue.Make(bundle)

        context.FixInputPort(0, pose1)
        context.FixInputPort(1, pose2)
        context.FixInputPort(2, velocity)
        context.FixInputPort(3, bundle_value)

        aggregator.CalcOutput(context, output)

        value = output.get_data(0).get_value()
        self.assertEqual(value.get_num_poses(), 3)
        isom1_actual = Isometry3()
        isom1_actual.set_translation(p1)
        self.assertTrue(
            (value.get_pose(0).matrix() == isom1_actual.matrix()).all())
        isom2_actual = Isometry3()
        isom2_actual.set_translation(p2)
        self.assertTrue(
            (value.get_pose(1).matrix() == isom2_actual.matrix()).all())
        vel_actual = value.get_velocity(1).get_velocity()
        self.assertTrue(np.allclose(vel_actual.rotational(), w))
        self.assertTrue(np.allclose(vel_actual.translational(), v))
        self.assertTrue(
            (value.get_pose(2).matrix() == Isometry3(q3, p3).matrix()).all())
Пример #17
0
    def load(self):
        """
        Loads `meshcat` visualization elements.

        @pre The `scene_graph` used to construct this object must be part of a
        fully constructed diagram (e.g. via `DiagramBuilder.Build()`).
        """
        self.vis[self.prefix].delete()

        # Intercept load message via mock LCM.
        mock_lcm = DrakeMockLcm()
        DispatchLoadMessage(self._scene_graph, mock_lcm)
        load_robot_msg = lcmt_viewer_load_robot.decode(
            mock_lcm.get_last_published_message("DRAKE_VIEWER_LOAD_ROBOT"))
        # Translate elements to `meshcat`.
        for i in range(load_robot_msg.num_links):
            link = load_robot_msg.link[i]
            [source_name, frame_name] = link.name.split("::")

            for j in range(link.num_geom):
                geom = link.geom[j]
                # MultibodyPlant currenly sets alpha=0 to make collision
                # geometry "invisible".  Ignore those geometries here.
                if geom.color[3] == 0:
                    continue

                element_local_tf = RigidTransform(
                    RotationMatrix(Quaternion(geom.quaternion)),
                    geom.position).GetAsMatrix4()

                if geom.type == geom.BOX:
                    assert geom.num_float_data == 3
                    meshcat_geom = meshcat.geometry.Box(geom.float_data)
                elif geom.type == geom.SPHERE:
                    assert geom.num_float_data == 1
                    meshcat_geom = meshcat.geometry.Sphere(geom.float_data[0])
                elif geom.type == geom.CYLINDER:
                    assert geom.num_float_data == 2
                    meshcat_geom = meshcat.geometry.Cylinder(
                        geom.float_data[1], geom.float_data[0])
                    # In Drake, cylinders are along +z
                    # In meshcat, cylinders are along +y
                    # Rotate to fix this misalignment
                    extra_rotation = tf.rotation_matrix(
                        math.pi / 2., [1, 0, 0])
                    element_local_tf[0:3, 0:3] = \
                        element_local_tf[0:3, 0:3].dot(
                            extra_rotation[0:3, 0:3])
                elif geom.type == geom.MESH:
                    meshcat_geom = \
                        meshcat.geometry.ObjMeshGeometry.from_file(
                            geom.string_data[0:-3] + "obj")
                else:
                    print "UNSUPPORTED GEOMETRY TYPE ", \
                        geom.type, " IGNORED"
                    continue

                # Turn a list of R,G,B elements (any indexable list of >= 3
                # elements will work), where each element is specified on range
                # [0., 1.], into the equivalent 24-bit value 0xRRGGBB.
                def Rgb2Hex(rgb):
                    val = 0
                    for i in range(3):
                        val += (256**(2 - i)) * int(255 * rgb[i])
                    return val

                self.vis[self.prefix][source_name][str(link.robot_num)][
                    frame_name][str(j)]\
                    .set_object(meshcat_geom,
                                meshcat.geometry
                                .MeshLambertMaterial(
                                    color=Rgb2Hex(geom.color)))
                self.vis[self.prefix][source_name][str(
                    link.robot_num)][frame_name][str(j)].set_transform(
                        element_local_tf)
Пример #18
0
    def load(self):
        """
        Loads `meshcat` visualization elements.
        @pre The `scene_graph` used to construct this object must be part of a
        fully constructed diagram (e.g. via `DiagramBuilder.Build()`).
        """
        # TODO(russt): Declare an initialization event to publish this
        # pending resolution of #9842.

        # Intercept load message via mock LCM.
        mock_lcm = DrakeMockLcm()
        DispatchLoadMessage(self._scene_graph, mock_lcm)
        load_robot_msg = lcmt_viewer_load_robot.decode(
            mock_lcm.get_last_published_message("DRAKE_VIEWER_LOAD_ROBOT"))
        # Translate elements to `meshcat`.
        for i in range(load_robot_msg.num_links):
            link = load_robot_msg.link[i]
            [source_name, frame_name] = link.name.split("::")

            for j in range(link.num_geom):
                geom = link.geom[j]
                element_local_tf = RigidTransform(
                    RotationMatrix(Quaternion(geom.quaternion)),
                    geom.position).GetAsMatrix4()

                if geom.type == geom.BOX:
                    assert geom.num_float_data == 3
                    meshcat_geom = meshcat.geometry.Box(geom.float_data)
                elif geom.type == geom.SPHERE:
                    assert geom.num_float_data == 1
                    meshcat_geom = meshcat.geometry.Sphere(geom.float_data[0])
                elif geom.type == geom.CYLINDER:
                    assert geom.num_float_data == 2
                    meshcat_geom = meshcat.geometry.Cylinder(
                        geom.float_data[1], geom.float_data[0])
                    # In Drake, cylinders are along +z
                    # In meshcat, cylinders are along +y
                    # Rotate to fix this misalignment
                    extra_rotation = tf.rotation_matrix(
                        math.pi / 2., [1, 0, 0])
                    element_local_tf[0:3, 0:3] = \
                        element_local_tf[0:3, 0:3].dot(
                            extra_rotation[0:3, 0:3])
                elif geom.type == geom.MESH:
                    meshcat_geom = \
                        meshcat.geometry.ObjMeshGeometry.from_file(
                            geom.string_data[0:-3] + "obj")
                else:
                    print "UNSUPPORTED GEOMETRY TYPE ", \
                        geom.type, " IGNORED"
                    continue

                self.vis[self.prefix][source_name][str(link.robot_num)][
                    frame_name][str(j)]\
                    .set_object(meshcat_geom,
                                meshcat.geometry
                                .MeshLambertMaterial(
                                    color=Rgb2Hex(geom.color)))
                self.vis[self.prefix][source_name][str(
                    link.robot_num)][frame_name][str(j)].set_transform(
                        element_local_tf)