Пример #1
0
def plot_geo_station_num(re_dic, to_path):
    dw = my_(config.MYSQL_BI_RW_ENV)
    muchcols_table = 'data_center.dc_stations_muchcols_enc'
    sqls = "select city scale,avg(latitude) avg_lat,avg(longitude) avg_lng,count(*) numbers from %s where name like '%%%s%%' group by city order by numbers desc" % (
    muchcols_table, re_dic['name'])
    count_station_ = dw.to_dataframe(sqls)
    # count_station_['scale'] = count_station_['scale'].apply(lambda x: change_city(x, pro))
    coords = {}
    for i in range(len(count_station_)):
        coords[count_station_.loc[i, 'scale']] = [count_station_.loc[i, 'avg_lng'], count_station_.loc[i, 'avg_lat']]

    num_Max = count_station_['numbers'].max()
    name_str = "油站名包含'%s':" % re_dic['name'] if re_dic['name'] else ''
    page = pyecharts.Page()
    style = pyecharts.Style(width=1300, height=860, background_color='#404a66', title_color="#eee", title_pos="center")
    geo = pyecharts.Geo(name_str + "油站分布地图", **style.init_style)
    geo.add("", count_station_['scale'], count_station_['numbers'], visual_text_color="#eee", is_legend_show=False,
            symbol_size=12, is_visualmap=True, visual_range=[0, num_Max],
            tooltip_formatter='{b}',
            label_emphasis_textsize=15,
            label_emphasis_pos='right', geo_cities_coords=coords)
    page.add(geo)
    chart2 = pyecharts.Bar(name_str + "油站分布柱状图", **style.init_style)
    chart2.add("", count_station_['scale'][:25], count_station_['numbers'][:25], visual_range=[0, num_Max],
               is_label_show=True,
               is_visualmap=True, visual_text_color='#eee')
    page.add(chart2)
    page.render(to_path)
Пример #2
0
def aboutMe(request):
    gauge = pyecharts.Gauge('', background_color='#f5f5f5')
    gauge.add('title',
              'Percent',
              80.66,
              scale_range=[0, 100],
              is_more_utils=True)
    gauge.show_config()
    result = gauge.render_embed()
    data = [("海门", 9), ("鄂尔多斯", 10), ("招远", 12), ("舟山", 18), ("齐齐哈尔", 10),
            ("盐城", 15)]
    geo = pyecharts.Geo("全国主要城市空气质量",
                        "data from pm2.5",
                        title_color="#000",
                        title_pos="center",
                        background_color='#f5f5f5')
    attr, value = geo.cast(data)
    geo.add("",
            attr,
            value,
            type="effectScatter",
            is_random=True,
            effect_scale=5,
            is_more_utils=True)
    geo.show_config()
    result1 = geo.render_embed()
    attr = ["Jan", "Feb", "Mar", "Apr", "May", "Jun"]
    v1 = [20, 33, 133, 124, 24, 313]
    v2 = [2.6, 12, 31, 241, 324, 134]
    bar = pyecharts.Bar('Bar Sample', background_color='#f5f5f5')
    bar.add("A", attr, v1, mark_line=["average"], mark_point=["min", "max"])
    bar.add("B",
            attr,
            v2,
            mark_line=["average"],
            mark_point=["min", "max"],
            is_more_utils=True)
    bar_result = bar.render_embed()
    pie = pyecharts.Pie('', background_color="#f5f5f5")
    pie.add("",
            attr,
            v1,
            is_lable_show=True,
            lable_text_color="#156ACF",
            is_more_utils=True)
    pie.show_config()
    pie_result = pie.render_embed()
    liquid = pyecharts.Liquid('', background_color="#000")
    liquid.add("", [0.66, 0.5], ['diamond'], ['#294D99', '#156ACF'],
               is_more_utils=True)
    liquid.show_config()
    liquid_result = liquid.render_embed()
    return render_to_response(
        'AboutMe.html', {
            'result': result,
            'result1': result1,
            'bar_result': bar_result,
            'pie_result': pie_result,
            'liquid_result': liquid_result
        })
Пример #3
0
def t9(pa):
    # geo地图有不显示数值的bug加上下面的函数和  add的参数 label_formatter=label_formatter
    def label_formatter(params):
        return params.value[2]

    style = p.Style(title_color="#fff",
                    title_pos="center",
                    width=1200,
                    height=600,
                    background_color='#404a59')
    chart = p.Geo("山东省计算机职位分布",
                  '数据来自齐鲁人才网,部分地区数据不准确',
                  **style.init_style,
                  subtitle_text_size=18)
    city = [i.replace('市', '') for i in next(pa)]
    # label_formatter=label_formatter防bug maptype去掉就是全国地图
    chart.add("",
              city,
              next(pa),
              maptype='山东',
              visual_range=[0, 700],
              label_formatter=label_formatter,
              visual_text_color="#fff",
              is_legend_show=True,
              symbol_size=15,
              is_visualmap=True,
              tooltip_formatter='{b}',
              label_emphasis_textsize=15,
              label_emphasis_pos='right',
              is_toolbox_show=False)
    return chart
Пример #4
0
def generateChinaMap():
    data = [("海门", 9), ("鄂尔多斯", 12), ("招远", 12), ("舟山", 12), ("齐齐哈尔", 14),
            ("盐城", 15), ("赤峰", 16), ("青岛", 18), ("乳山", 18), ("金昌", 19),
            ("泉州", 21), ("莱西", 21), ("日照", 21), ("胶南", 22), ("南通", 23),
            ("拉萨", 24), ("云浮", 24), ("梅州", 25), ("文登", 25), ("上海", 25),
            ("攀枝花", 25), ("威海", 25), ("承德", 25), ("厦门", 26), ("汕尾", 26),
            ("潮州", 26), ("丹东", 27), ("太仓", 27), ("曲靖", 27), ("烟台", 28),
            ("福州", 29), ("瓦房店", 30), ("即墨", 30), ("抚顺", 31), ("玉溪", 31),
            ("张家口", 31), ("阳泉", 31), ("莱州", 32), ("湖州", 32), ("汕头", 32),
            ("昆山", 33), ("宁波", 33), ("湛江", 33), ("揭阳", 34), ("荣成", 34),
            ("连云港", 35), ("葫芦岛", 35), ("常熟", 36), ("东莞", 36), ("河源", 36),
            ("淮安", 36), ("泰州", 36), ("南宁", 37), ("营口", 37), ("惠州", 37),
            ("江阴", 37), ("蓬莱", 37), ("韶关", 38), ("嘉峪关", 38), ("广州", 38),
            ("延安", 38), ("太原", 39), ("清远", 39), ("中山", 39), ("昆明", 39),
            ("寿光", 40), ("盘锦", 40), ("长治", 41), ("深圳", 41), ("珠海", 42),
            ("宿迁", 43), ("咸阳", 43), ("铜川", 44), ("平度", 44), ("佛山", 44),
            ("海口", 44), ("江门", 45), ("章丘", 45), ("肇庆", 46), ("大连", 47),
            ("临汾", 47), ("吴江", 47), ("石嘴山", 49), ("沈阳", 50), ("苏州", 50),
            ("茂名", 50), ("嘉兴", 51), ("长春", 51), ("胶州", 52), ("银川", 52),
            ("张家港", 52), ("三门峡", 53), ("锦州", 54), ("南昌", 54), ("柳州", 54),
            ("三亚", 54), ("自贡", 56), ("吉林", 56), ("阳江", 57), ("泸州", 57),
            ("西宁", 57), ("宜宾", 58), ("呼和浩特", 58), ("成都", 58), ("大同", 58),
            ("镇江", 59), ("桂林", 59), ("张家界", 59), ("宜兴", 59), ("北海", 60),
            ("西安", 61), ("金坛", 62), ("东营", 62), ("牡丹江", 63), ("遵义", 63),
            ("绍兴", 63), ("扬州", 64), ("常州", 64), ("潍坊", 65), ("重庆", 66),
            ("台州", 67), ("南京", 67), ("滨州", 70), ("贵阳", 71), ("无锡", 71),
            ("本溪", 71), ("克拉玛依", 72), ("渭南", 72), ("马鞍山", 72), ("宝鸡", 72),
            ("焦作", 75), ("句容", 75), ("北京", 79), ("徐州", 79), ("衡水", 80),
            ("包头", 80), ("绵阳", 80), ("乌鲁木齐", 84), ("枣庄", 84), ("杭州", 84),
            ("淄博", 85), ("鞍山", 86), ("溧阳", 86), ("库尔勒", 86), ("安阳", 90),
            ("开封", 90), ("济南", 92), ("德阳", 93), ("温州", 95), ("九江", 96),
            ("邯郸", 98), ("临安", 99), ("兰州", 99), ("沧州", 100), ("临沂", 103),
            ("南充", 104), ("天津", 105), ("富阳", 106), ("泰安", 112), ("诸暨", 112),
            ("郑州", 113), ("哈尔滨", 114), ("聊城", 116), ("芜湖", 117), ("唐山", 119),
            ("平顶山", 119), ("邢台", 119), ("德州", 120), ("济宁", 120), ("荆州", 127),
            ("宜昌", 130), ("义乌", 132), ("丽水", 133), ("洛阳", 134), ("秦皇岛", 136),
            ("株洲", 143), ("石家庄", 147), ("莱芜", 148), ("常德", 152), ("保定", 153),
            ("湘潭", 154), ("金华", 157), ("岳阳", 169), ("长沙", 175), ("衢州", 177),
            ("廊坊", 193), ("菏泽", 194), ("合肥", 229), ("武汉", 273), ("大庆", 279)]
    geo = pyecharts.Geo("全国空气质量检测",
                        "data from PM2.5",
                        title_color="#fff",
                        title_pos="center",
                        width=1000,
                        height=600,
                        background_color='#404a59')
    attr, value = geo.cast(data)
    geo.add("",
            attr,
            value,
            visual_range=[0, 20],
            maptype='china',
            visual_text_color='#fff',
            symbol_size=10,
            is_visualmap=True)
    geo.render("全国空气质量检测.html")
    geo
Пример #5
0
def func():

    page = pyecharts.Page()  # step 1

    # bar
    attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
    v1 = [5, 20, 36, 10, 75, 90]
    v2 = [10, 25, 8, 60, 20, 80]
    bar = pyecharts.Bar("柱状图数据堆叠示例")
    bar.add("商家A", attr, v1, is_stack=True)
    bar.add("商家B", attr, v2, is_stack=True)
    page.add(bar)  # step 2

    # scatter3D
    import random
    data = [[
        random.randint(0, 100),
        random.randint(0, 100),
        random.randint(0, 100)
    ] for _ in range(80)]
    range_color = [
        '#313695', '#4575b4', '#74add1', '#abd9e9', '#e0f3f8', '#ffffbf',
        '#fee090', '#fdae61', '#f46d43', '#d73027', '#a50026'
    ]
    scatter3D = pyecharts.Scatter3D("3D 散点图示例", width=1200, height=600)
    scatter3D.add("", data, is_visualmap=True, visual_range_color=range_color)
    page.add(scatter3D)  # step 2

    page.render()  # step 3

    # scatter_geo
    attr = ['11', '22']
    data = ['1', '2']
    scatter_geo = pyecharts.Geo("地理位置视图", width=1200, height=600)
    scatter_geo.add("", attr, data)
    page.add(scatter_geo)  # step 2

    page.render()  # step 3

    data = [["广州", "北京"], ["广州", "上海"]]
    scatter_geo = pyecharts.GeoLines("地理位置视图", width=1200, height=600)
    scatter_geo.add("上午航班",
                    data,
                    geo_normal_color='#ff00ff',
                    geo_effect_period=9,
                    geo_effect_color='#ff0000',
                    geo_effect_symbol='arrow')
    data = [["广州", "南昌"], ["广州", "成都"]]
    scatter_geo.add("下午航班",
                    data,
                    geo_effect_traillength=1,
                    geo_emphasis_color='#0000ff')
    page.add(scatter_geo)  # step 2

    page.render()  # step 3
Пример #6
0
def geoData(self, chatroom=None):
    path = self.savedir + 'geoData.html'
    if chatroom:
        cmd = 'geoData %s' % chatroom
        myLogging(self.cmdFile, self.nickName, infoType='cmd', other=cmd)
        try:
            chatroom == self.instance.search_chatrooms(
                name=chatroom)[0]['NickName']
        except Exception as reason:
            self.instance.send('在您的通讯录中没有找到该群[%s]' % chatroom)
            myLogging(self.errFile,
                      self.nickName,
                      infoType='err',
                      other=cmd,
                      info=reason)
            return
        memberList = self.getChatroomMembers(chatroom)['MemberList']
        subtitle = self.nickName + ':' + chatroom
    else:
        cmd = 'geoData'
        myLogging(self.cmdFile, self.nickName, infoType='cmd', other=cmd)
        memberList = [each['Signature'] for each in self.frdInfoList]
        subtitle = self.nickName
    cities = [each['City'] for each in memberList]
    with open(
            os.path.dirname(os.path.abspath(__file__)) +
            '/city_coordinates.json', 'rb') as f:
        cityDict = json.load(f)
    data = [(each, cities.count(each)) for each in set(cities)
            if each in cityDict.keys()]
    geo = pyecharts.Geo('微信好友地理分布',
                        subtitle,
                        title_color="#fff",
                        title_pos="center",
                        background_color='#404a59')
    attr, value = geo.cast(data)
    geo.add("",
            attr,
            value,
            visual_range=[0, 100],
            visual_text_color="#fff",
            symbol_size=10,
            is_visualmap=True)
    geo.render(path)
    self.instance.send('@fil@%s' % path)
    os.remove(path)
    myLogging(self.cmdFile,
              self.nickName,
              infoType='cmd',
              status='success',
              other=cmd)
Пример #7
0
def read_region(q, star_date, end_date):
    # q = '11'
    keyword = q
    q = quote(q, 'utf-8')
    request_url = 'http://47.92.145.108:30003/youche/wordsArea.do?keyword=' + q + '&startDate=' + star_date + '&endDate=' + end_date
    s = urllib.request.urlopen(request_url).read().decode('utf8')
    json_data = json.loads(s)
    region_list = json_data['simba_insight_wordsareadata_get_response'][
        'word_areadata_list']['insight_words_area_distribute_data_d_t_o']
    regions = []
    values = []
    min_num = 100000000
    max_num = 0
    for region in region_list:
        if 'cityname' in region:
            region_name = region['cityname']
            if region_name == '内蒙':
                region_name = '内蒙古'
            if region_name.find('中国其它') > -1 or region_name.find('国外') > -1:
                continue
            regions.append(region_name)
            pv = int(region['impression'])
            if pv < min_num:
                min_num = pv
            if pv > max_num:
                max_num = pv
            values.append(region['impression'])
            # print(region['cityname'])

    geo = pyecharts.Geo(keyword + "--全国主要城市访问量",
                        star_date + "~" + end_date,
                        title_color="#fff",
                        title_pos="center",
                        width=1000,
                        height=600,
                        background_color='#404a59')
    # attr, value = geo.cast(data)
    geo.add("流量",
            regions,
            values,
            visual_range=[min_num, max_num],
            maptype='china',
            visual_text_color="#fff",
            symbol_size=10,
            is_visualmap=True)

    # map = Map(keyword+"~全国主要城市访问量", star_date+"~"+end_date, width=1200, height=600)
    # map.add("", regions, values, visual_range=[min_num, max_num], maptype='china', is_visualmap=True, is_label_show=True,
    #         visual_text_color='#000')
    return geo
Пример #8
0
def create_Geo():
    geo = pyecharts.Geo("最高气温地理坐标系图",
                        '2018-4-16',
                        title_color='#fff',
                        title_pos='center',
                        width=1200,
                        height=600,
                        background_color='#404a95')
    geo.add("最高气温",
            cities,
            highs,
            is_visualmap=True,
            visual_range=[0, 40],
            visual_text_color='#fff',
            symbol_size=5,
            legend_pos='right',
            is_geo_effect_show=True)
    # geo.render("Geo-Low.html")
    page.add(geo)
Пример #9
0
def plot_geo_station(re_dic, to_path):
    dw = my_(config.MYSQL_BI_RW_ENV)
    muchcols_table = 'data_center.dc_stations_muchcols_enc'
    sqls = "select name scale,latitude lat,longitude lng from %s where name like '%%%s%%'" % (muchcols_table, re_dic['name'])
    count_station_ = dw.to_dataframe(sqls)
    count_station_['numbers']=1
    coords={}
    for i in range(len(count_station_)):
        coords[count_station_.loc[i,'scale']]=[count_station_.loc[i,'lng'],count_station_.loc[i,'lat']]
    # num_Max = count_station_['numbers'].max()
    name_str = "油站名包含'%s':" %re_dic['name'] if re_dic['name'] else ''
    page = pyecharts.Page()
    style = pyecharts.Style(width=1300, height=860, background_color='#404a49', title_color="#eee", title_pos="center")
    geo = pyecharts.Geo(name_str+"油站分布地图",**style.init_style)
    geo.add("",count_station_['scale'], count_station_['numbers'], visual_text_color="#eee", is_legend_show=False,
              symbol_size=11, is_visualmap=True,
              tooltip_formatter='{b}',
              label_emphasis_textsize=15,
              label_emphasis_pos='right',geo_cities_coords=coords)
    page.add(geo)
    page.render(to_path)
Пример #10
0
def plot_city(friends):
    friends_city = []

    for city in friends[1:]:
        friends_city.append(city['City'])

    city_loc = collections.Counter(friends_city)
    print(city_loc)

    values = []
    for city in set(friends_city):
        if city != '' and city.isalpha() and city[0].isupper() == False:
            values.append((city, city_loc[city]))

    geo = pc.Geo(u"陈永斌 各省微信好友分布",
                 'John',
                 title_color='#fff',
                 title_pos='center',
                 width=1200,
                 height=600,
                 background_color='#404a59')

    attr, value = geo.cast(values)
    print(value)
    print(attr)
    geo.add('',
            attr,
            value,
            visual_range=[0, 200],
            visual_text_color='#fff',
            symbol_size=15,
            is_visualmap=True)

    geo.show_config()

    geo.render('weixin2.html')
Пример #11
0
names=['id','city','comments','score','date','fileview','sex']
UniqueComments=pd.read_table('/home/monchu/Data/assignments/aquamanComments.txt','r',names=names,delimiter='\t')
cityCounter=Counter()
UniqueComments['city'].describe()
after=pd.DataFrame()
for index,row in UniqueComments.iterrows():
    if row['date']>'2018-12-07 00:00:00':
        try:
            city=unicode(row['city'],'utf-8')
            cityCounter[city]+=1
            #after=after.append(row)
        except:pass
#after.to_csv('/home/monchu/Data/assignments/Valuable.csv',sep='\t',index=False)
cityDict=dict(cityCounter)
attr,value=pyecharts.Geo.cast(cityDict)
geo= pyecharts.Geo("Distribution of Aquaman film commenters in China (Total comments:{})".format(sum(value)), "Data scraped from MaoYao.com; Before 2018-12-20 11:09:25", title_color="#fff", title_pos="center", width=1200, height=600,background_color='#404a59')
geo.add_coordinate_json('/home/monchu/Data/assignments/city2.json')
flag=True
i=0
geo.add_coordinate(u'伊犁',80.9,91.01)
geo.add_coordinate(u'杨凌',107.59,34.14)
geo.add_coordinate(u'海东',102.12,36.50)
geo.add_coordinate(u'海南州',99,36)
geo.add_coordinate(u'璧山',106.15,29.41)
geo.add_coordinate(u'锡林郭勒',116.23,43.23)
while flag:  
    try:
        geo.add("", attr, value,visual_range=[min(value),max(value)],is_piecewise=True,visual_text_color="#fff",symbol_size=6, is_visualmap=True,visual_split_numer=6)
        print "?"
        flag=False
    except Exception as e:
Пример #12
0
        except:
            pass
    results = pd.DataFrame(
        results, columns=['cityName', 'content', 'gender', 'id', 'startTime'])
    print(results[:5])

    results.to_csv('movie_duye_comments.txt', sep='\t', index=False)

    data = pd.read_csv('movie_duye_comments.txt',
                       sep='\t',
                       header=0,
                       encoding='utf-8')
    print(data['content'][:5])

    ##pic 1 distribution map
    geo = pyecharts.Geo(' distribution of duye ', 'data resource: maoyan')
    attr, value = geo.cast(list(data['content']))
    # print(value)
    geo.add('',
            attr,
            value,
            visual_range=[0, 5000],
            visual_text_color='#fff',
            symbol_size=15,
            is_visualmap=True,
            is_piecewise=False,
            visual_split_number=10)
    geo.render('movie_duye_map.html')

    ##pic 2 city bar
    data_top20 = Counter(list(data['cityName'])).most_common(20)
Пример #13
0
    ['广州', '杭州']
]
'''
data_gz = [['广州', '上海'], ['广州', '杭州'], ['广州', '南京'], ['广州',
                                                      '西安'], ['广州', '北京'],
           ['广州', '长沙'], ['广州', '重庆'], ['广州', '成都'], ['广州',
                                                      '南昌'], ['广州', '贵阳'],
           ['广州', '昆明'], ['广州', '哈尔滨'],
           ['广州', '武汉'], ['广州', '兰州'], ['广州', '拉萨'], ['广州', '乌鲁木齐'],
           ['广州', '呼和浩特'], ['广州', '台北'], ['广州', '天津'], ['广州', '福州'],
           ['广州', '郑州'], ['广州', '太原'], ['广州', '长春'], ['广州',
                                                      '济南'], ['广州', '银川'],
           ['广州', '南宁'], ['广州', '海口'], ['广州', '合肥'], ['广州',
                                                      '石家庄'], ['广州', '沈阳']]

geo = pca.Geo('GeoLines示例', **style.init_style)

geo_lines = pca.GeoLines('GeoLines示例', **style.init_style)
geo_lines.add('从广州出发', data_gz, is_legend_show=False)
geo_lines.render(r'd:\render.html')

from pyecharts import Geo
import pyecharts as pca

style = pca.Style(title_top='#fff',
                  title_pos='center',
                  width=1200,
                  height=600,
                  background_color='#404a59')
data = [('广州', 45), ('漳州', 35), ('A市', 43)]
geo = Geo("全国主要城市空气质量", "data from pm2.5", **style.init_style)
Пример #14
0
    bar = echarts.Bar("Bar chart", "precipitation and evaporation one year")
    bar.add("precipitation",
            attr,
            v1,
            is_label_show=True,
            label_formatter=label_formatter)
    bar.render(path='tmp/formatter.html')

# Tooltip tooltip_formatter
if __name__ == '__main__':

    def geo_formatter(params):
        return params.name + ' : ' + params.value[2]

    data = [('澄海区', 30), ('南澳县', 40), ('龙湖区', 50), ('金平区', 60)]
    geo = echarts.Geo("汕头市地图示例", )
    attr, value = geo.cast(data)
    geo.add(
        "",
        attr,
        value,
        maptype="汕头",
        is_visualmap=True,
        is_legend_show=False,
        tooltip_formatter=geo_formatter,  # 重点在这里,将函数直接传递为参数。
        label_emphasis_textsize=15,
        label_emphasis_pos='right',
    )
    geo.render(path='tmp/formatter.html')

# Label 示例
Пример #15
0
def aboutMe(request):
    gauge = pyecharts.Gauge('', background_color='#f5f5f5')
    gauge.add('title',
              'Percent',
              80.66,
              scale_range=[0, 100],
              is_more_utils=True)
    gauge.show_config()
    result = gauge.render_embed()
    data = [("宿迁", 9), ("武汉", 10), ("重庆", 12), ("哈尔滨", 18), ("乌鲁木齐", 10),
            ("北京", 15), ("南京", 13)]
    geo = pyecharts.Geo("中国各城市PM2.5含量示意图",
                        "data from pm2.5",
                        title_color="#000",
                        title_pos="center",
                        background_color='#f5f5f5')
    attr, value = geo.cast(data)
    geo.add("",
            attr,
            value,
            type="effectScatter",
            is_random=True,
            effect_scale=5,
            is_more_utils=True)
    geo.show_config()
    result1 = geo.render_embed()
    attr = ["Jan", "Feb", "Mar", "Apr", "May", "Jun"]
    v1 = [20, 33, 133, 124, 24, 313]
    v2 = [2.6, 12, 31, 241, 324, 134]
    bar = pyecharts.Bar('Bar Sample', background_color='#f5f5f5')
    bar.add("A", attr, v1, mark_line=["average"], mark_point=["min", "max"])
    bar.add("B",
            attr,
            v2,
            mark_line=["average"],
            mark_point=["min", "max"],
            is_more_utils=True)
    bar_result = bar.render_embed()
    pie = pyecharts.Pie('', background_color="#f5f5f5")
    pie.add("",
            attr,
            v1,
            is_lable_show=True,
            lable_text_color="#156ACF",
            is_more_utils=True)
    pie.show_config()
    pie_result = pie.render_embed()
    liquid = pyecharts.Liquid('', background_color="#000")
    liquid.add("", [0.66, 0.5], ['diamond'], ['#294D99', '#156ACF'],
               is_more_utils=True)
    liquid.show_config()
    liquid_result = liquid.render_embed()
    l3d = line3d()
    l3d_result = l3d.render_embed()
    name = [
        'afaaf', 'Tom han', 'ajf oafoa', 'auoj aoudh', 'ad da fa',
        'auohdahb da'
    ]
    value = [
        10000,
        1132,
        414,
        1313,
        3452,
        1413,
    ]
    wordcloud = pyecharts.WordCloud(width=800,
                                    height=400,
                                    background_color="#000")
    wordcloud.add("", name, value, word_size_range=[20, 100], rotate_step=50)
    wordcloud.show_config()
    w = wordcloud.render_embed()
    REMOTE_HOST = "https://pyecharts.github.io/assets/js"
    return render_to_response(
        'AboutMe.html', {
            'result': result,
            'result1': result1,
            'bar_result': bar_result,
            'pie_result': pie_result,
            'liquid_result': liquid_result,
            'l3d_result': l3d_result,
            'host': REMOTE_HOST,
            'script_list': l3d.get_js_dependencies(),
            'w': w
        })