Пример #1
0
def main(args):
    eddl.download_cifar10()

    num_classes = 10

    in_ = eddl.Input([3, 32, 32])

    layer = in_
    layer = eddl.RandomCropScale(layer, [0.8, 1.0])
    layer = eddl.RandomHorizontalFlip(layer)
    layer = eddl.ReLu(BG(eddl.Conv(layer, 64, [3, 3], [1, 1], "same", False)))
    layer = eddl.Pad(layer, [0, 1, 1, 0])
    for i in range(3):
        layer = ResBlock(layer, 64, 0, i == 0)
    for i in range(4):
        layer = ResBlock(layer, 128, i == 0)
    for i in range(6):
        layer = ResBlock(layer, 256, i == 0)
    for i in range(3):
        layer = ResBlock(layer, 512, i == 0)
    layer = eddl.MaxPool(layer, [4, 4])
    layer = eddl.Reshape(layer, [-1])

    out = eddl.Softmax(eddl.Dense(layer, num_classes))
    net = eddl.Model([in_], [out])

    eddl.build(
        net, eddl.sgd(0.001, 0.9), ["soft_cross_entropy"],
        ["categorical_accuracy"],
        eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem))

    eddl.summary(net)
    eddl.plot(net, "model.pdf", "TB")

    x_train = Tensor.load("cifar_trX.bin")
    y_train = Tensor.load("cifar_trY.bin")
    x_train.div_(255.0)

    x_test = Tensor.load("cifar_tsX.bin")
    y_test = Tensor.load("cifar_tsY.bin")
    x_test.div_(255.0)

    if args.small:
        # this is slow, make it really small
        x_train = x_train.select([":500"])
        y_train = y_train.select([":500"])
        x_test = x_test.select([":100"])
        y_test = y_test.select([":100"])

    lr = 0.01
    for j in range(3):
        lr /= 10.0
        eddl.setlr(net, [lr, 0.9])
        for i in range(args.epochs):
            eddl.fit(net, [x_train], [y_train], args.batch_size, 1)
            eddl.evaluate(net, [x_test], [y_test], bs=args.batch_size)
    print("All done")
Пример #2
0
def main(args):
    eddl.download_cifar10()

    num_classes = 10

    in_ = eddl.Input([3, 32, 32])

    layer = in_
    layer = eddl.MaxPool(eddl.ReLu(Normalization(
        eddl.Conv(layer, 32, [3, 3], [1, 1])
    )), [2, 2])
    layer = eddl.MaxPool(eddl.ReLu(Normalization(
        eddl.Conv(layer, 64, [3, 3], [1, 1])
    )), [2, 2])
    layer = eddl.MaxPool(eddl.ReLu(Normalization(
        eddl.Conv(layer, 128, [3, 3], [1, 1])
    )), [2, 2])
    layer = eddl.MaxPool(eddl.ReLu(Normalization(
        eddl.Conv(layer, 256, [3, 3], [1, 1])
    )), [2, 2])
    layer = eddl.GlobalMaxPool(layer)
    layer = eddl.Flatten(layer)
    layer = eddl.Activation(eddl.Dense(layer, 128), "relu")

    out = eddl.Softmax(eddl.Dense(layer, num_classes))
    net = eddl.Model([in_], [out])

    eddl.build(
        net,
        eddl.adam(0.001),
        ["soft_cross_entropy"],
        ["categorical_accuracy"],
        eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem)
    )

    eddl.summary(net)
    eddl.plot(net, "model.pdf")

    x_train = Tensor.load("cifar_trX.bin")
    y_train = Tensor.load("cifar_trY.bin")
    x_train.div_(255.0)

    x_test = Tensor.load("cifar_tsX.bin")
    y_test = Tensor.load("cifar_tsY.bin")
    x_test.div_(255.0)

    if args.small:
        x_train = x_train.select([":5000"])
        y_train = y_train.select([":5000"])
        x_test = x_test.select([":1000"])
        y_test = y_test.select([":1000"])

    for i in range(args.epochs):
        eddl.fit(net, [x_train], [y_train], args.batch_size, 1)
        eddl.evaluate(net, [x_test], [y_test], bs=args.batch_size)
    print("All done")
Пример #3
0
def main(args):
    eddl.download_cifar10()

    num_classes = 10

    in_ = eddl.Input([3, 32, 32])

    layer = in_
    layer = eddl.RandomCropScale(layer, [0.8, 1.0])
    layer = eddl.RandomFlip(layer, 1)
    layer = eddl.ReLu(BG(eddl.Conv(layer, 64, [3, 3], [1, 1])))
    layer = eddl.Pad(layer, [0, 1, 1, 0])
    layer = ResBlock(layer, 64, 2, True)
    layer = ResBlock(layer, 64, 2, False)
    layer = ResBlock(layer, 128, 2, True)
    layer = ResBlock(layer, 128, 2, False)
    layer = ResBlock(layer, 256, 2, True)
    layer = ResBlock(layer, 256, 2, False)
    layer = ResBlock(layer, 256, 2, True)
    layer = ResBlock(layer, 256, 2, False)
    layer = eddl.Reshape(layer, [-1])
    layer = eddl.ReLu(BG(eddl.Dense(layer, 512)))

    out = eddl.Softmax(eddl.Dense(layer, num_classes))
    net = eddl.Model([in_], [out])

    eddl.build(
        net,
        eddl.sgd(0.01, 0.9),
        ["soft_cross_entropy"],
        ["categorical_accuracy"],
        eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem)
    )

    eddl.summary(net)
    eddl.plot(net, "model.pdf", "TB")

    x_train = Tensor.load("cifar_trX.bin")
    y_train = Tensor.load("cifar_trY.bin")
    x_train.div_(255.0)

    x_test = Tensor.load("cifar_tsX.bin")
    y_test = Tensor.load("cifar_tsY.bin")
    x_test.div_(255.0)

    if args.small:
        x_train = x_train.select([":5000"])
        y_train = y_train.select([":5000"])
        x_test = x_test.select([":1000"])
        y_test = y_test.select([":1000"])

    for i in range(args.epochs):
        eddl.fit(net, [x_train], [y_train], args.batch_size, 1)
        eddl.evaluate(net, [x_test], [y_test], bs=args.batch_size)
    print("All done")
Пример #4
0
def main(args):
    eddl.download_cifar10()

    num_classes = 10

    in_ = eddl.Input([3, 32, 32])

    layer = in_

    layer = eddl.RandomCropScale(layer, [0.8, 1.0])
    layer = eddl.RandomFlip(layer, 1)
    layer = eddl.RandomCutout(layer, [0.1, 0.3], [0.1, 0.3])

    layer = eddl.MaxPool(Block3_2(layer, 64))
    layer = eddl.MaxPool(Block3_2(layer, 128))
    layer = eddl.MaxPool(Block1(Block3_2(layer, 256), 256))
    layer = eddl.MaxPool(Block1(Block3_2(layer, 512), 512))
    layer = eddl.MaxPool(Block1(Block3_2(layer, 512), 512))
    layer = eddl.Reshape(layer, [-1])
    layer = eddl.Activation(eddl.Dense(layer, 512), "relu")

    out = eddl.Softmax(eddl.Dense(layer, num_classes))
    net = eddl.Model([in_], [out])

    eddl.build(
        net,
        eddl.sgd(0.001, 0.9),
        ["soft_cross_entropy"],
        ["categorical_accuracy"],
        eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem)
    )

    eddl.setlogfile(net, "vgg16")
    eddl.summary(net)
    eddl.plot(net, "model.pdf")

    x_train = Tensor.load("cifar_trX.bin")
    y_train = Tensor.load("cifar_trY.bin")
    x_train.div_(255.0)

    x_test = Tensor.load("cifar_tsX.bin")
    y_test = Tensor.load("cifar_tsY.bin")
    x_test.div_(255.0)

    if args.small:
        x_train = x_train.select([":5000"])
        y_train = y_train.select([":5000"])
        x_test = x_test.select([":1000"])
        y_test = y_test.select([":1000"])

    for i in range(args.epochs):
        eddl.fit(net, [x_train], [y_train], args.batch_size, 1)
        eddl.evaluate(net, [x_test], [y_test], bs=args.batch_size)
    print("All done")
Пример #5
0
def main(args):
    eddl.download_cifar10()

    num_classes = 10

    in_ = eddl.Input([3, 32, 32])

    layer = in_

    layer = eddl.RandomHorizontalFlip(layer)
    layer = eddl.RandomCropScale(layer, [0.8, 1.0])
    layer = eddl.RandomCutout(layer, [0.1, 0.5], [0.1, 0.5])

    layer = eddl.MaxPool(eddl.ReLu(eddl.BatchNormalization(
        eddl.HeUniform(eddl.Conv(layer, 32, [3, 3], [1, 1], "same", False)),
        True)), [2, 2])
    layer = eddl.MaxPool(eddl.ReLu(eddl.BatchNormalization(
        eddl.HeUniform(eddl.Conv(layer, 64, [3, 3], [1, 1], "same", False)),
        True)), [2, 2])
    layer = eddl.MaxPool(eddl.ReLu(eddl.BatchNormalization(
        eddl.HeUniform(eddl.Conv(layer, 128, [3, 3], [1, 1], "same", False)),
        True)), [2, 2])
    layer = eddl.MaxPool(eddl.ReLu(eddl.BatchNormalization(
        eddl.HeUniform(eddl.Conv(layer, 256, [3, 3], [1, 1], "same", False)),
        True)), [2, 2])

    layer = eddl.Reshape(layer, [-1])
    layer = eddl.Activation(eddl.BatchNormalization(
        eddl.Dense(layer, 128), True
    ), "relu")
    out = eddl.Softmax(eddl.BatchNormalization(
        eddl.Dense(layer, num_classes), True
    ))
    net = eddl.Model([in_], [out])

    eddl.build(
        net,
        eddl.adam(0.001),
        ["softmax_cross_entropy"],
        ["categorical_accuracy"],
        eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem)
    )
    eddl.summary(net)
    eddl.plot(net, "model.pdf")

    x_train = Tensor.load("cifar_trX.bin")
    y_train = Tensor.load("cifar_trY.bin")
    x_train.div_(255.0)

    x_test = Tensor.load("cifar_tsX.bin")
    y_test = Tensor.load("cifar_tsY.bin")
    x_test.div_(255.0)

    if args.small:
        x_train = x_train.select([":5000"])
        y_train = y_train.select([":5000"])
        x_test = x_test.select([":1000"])
        y_test = y_test.select([":1000"])

    for i in range(args.epochs):
        eddl.fit(net, [x_train], [y_train], args.batch_size, 1)
        eddl.evaluate(net, [x_test], [y_test], bs=args.batch_size)
    eddl.setlr(net, [0.0001])
    for i in range(args.epochs):
        eddl.fit(net, [x_train], [y_train], args.batch_size, 1)
        eddl.evaluate(net, [x_test], [y_test], bs=args.batch_size)

    print("All done")
import pyeddl.eddl as eddl
from pyeddl.tensor import Tensor
import sys


def defblock(l, bn, nf, reps, initializer):
    for i in range(reps):
        l = initializer(eddl.Conv(l, nf, [3, 3]))
        if bn:
            l = eddl.BatchNormalization(l, 0.99, 0.001, True, "")
        l = eddl.ReLu(l)
    l = eddl.MaxPool(l, [2, 2], [2, 2], "valid")
    return l


eddl.download_cifar10()
gpu = int(sys.argv[2]) == 1 if len(sys.argv) > 2 else True

epochs = 50 if gpu else 1
batch_size = 50
num_classes = 10

bn = int(sys.argv[1]) == 1
initializer = eddl.GlorotUniform if bn else eddl.HeUniform

inp = eddl.Input([3, 32, 32])
l = inp
l = defblock(l, bn, 64, 2, initializer)
l = defblock(l, bn, 128, 2, initializer)
l = defblock(l, bn, 256, 4, initializer)
l = defblock(l, bn, 512, 4, initializer)
Пример #7
0
def main(args):

    freeze_epochs = 2
    unfreeze_epochs = 5
    num_classes = 10  # 10 labels in cifar10

    eddl.download_cifar10()
    eddl.download_model("resnet18.onnx", "re7jodd12srksd7")
    net = eddl.import_net_from_onnx_file("resnet18.onnx", [3, 32, 32], DEV_CPU)
    names = [_.name for _ in net.layers]

    # Remove dense output layer
    eddl.removeLayer(net, "resnetv15_dense0_fwd")
    # Get last layer to connect the new dense
    layer = eddl.getLayer(net, "flatten_170")
    out = eddl.Softmax(eddl.Dense(layer, num_classes, True, "new_dense"))
    # Get input layer
    in_ = eddl.getLayer(net, "data")
    # Create a new model
    net = eddl.Model([in_], [out])

    eddl.build(
        net,
        eddl.adam(0.0001),
        ["softmax_cross_entropy"],
        ["categorical_accuracy"],
        eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem),
        False  # do not initialize weights to random values
    )
    eddl.summary(net)
    # Force initialization of new layers
    eddl.initializeLayer(net, "new_dense")

    x_train = Tensor.load("cifar_trX.bin")
    y_train = Tensor.load("cifar_trY.bin")
    x_test = Tensor.load("cifar_tsX.bin")
    y_test = Tensor.load("cifar_tsY.bin")
    if args.small:
        sel = [f":{2 * args.batch_size}"]
        x_train = x_train.select(sel)
        y_train = y_train.select(sel)
        x_test = x_test.select(sel)
        y_test = y_test.select(sel)

    x_train.div_(255.0)
    x_test.div_(255.0)

    # Freeze pretrained weights
    for n in names:
        eddl.setTrainable(net, n, False)

    # Train new layers
    eddl.fit(net, [x_train], [y_train], args.batch_size, freeze_epochs)

    # Unfreeze weights
    for n in names:
        eddl.setTrainable(net, n, True)

    # Train all layers
    eddl.fit(net, [x_train], [y_train], args.batch_size, unfreeze_epochs)

    # Evaluate
    eddl.evaluate(net, [x_test], [y_test], args.batch_size)

    print("All done")