Пример #1
0
 def _setup_eit(self):
     mesh_t = self._mesh  # ms, el_pos
     el_dist, step = 1, 1
     ex_mat = eit_scan_lines(16, el_dist)
     # Reconstruction step
     eit_obj = greit.GREIT(mesh_t[0], mesh_t[1], ex_mat=ex_mat, step=step, perm=0.8,
                           parser='std')  # prem default value eq = 1.
     eit_obj.setup(p=0.45, lamb=1e-3, n=96, s=10.0, ratio=0.05)  # n - wielkość siatki, domyślna wartość 32
     return eit_obj
def current_matrix_generator(n_el: int, ex_mat_length: int, ex_pair_mode='adj', spaced: bool=False):
    """
    This function generates an excitation matrix of current pairs using the adj method, opposite method, all 
    possible pairs or custom step. It can iterate and build the matrix contiguously, assigning electrodes in 
    turn around the perimeter or 'spaced' can be set to True, which spaces out the measurements slightly.
    I.e. for the adj method, spaced=True might give [(1,2),(5,6),(10,11)] as opposed to [(1,2),(2,3),(3,4)].
    To Do:
        - Add in a randomly assigned current pairs method
    
    Parameters
    ----------
    n_el : int
        The number of electrodes.
    ex_mat_length : int
        The desired length of the excitation matrix, if none will generate maximum number of measurements
        for the given ex_pair_mode.
    ex_pair_mode : int or string 
        The default is 'adj' or step of 1, but can be 'opp' step of n_el/2 or 'all'. Also accepts a
        custom step value. 
    spaced : bool, optional
        If True, this will activate orderedExMat which spaces out measurements around the perimeter.

    Returns
    -------
    ex_mat : ndarray (N, 2)
        List of the current pairs (Source, sink).
    """
    
    if (ex_pair_mode == 1 or ex_pair_mode == 'adj'):
        print("Adjacent current pairs mode")
        dist = 1
    elif (ex_pair_mode == n_el//2 or ex_pair_mode == 'opp'):
        print("Opposite current pairs mode")
        dist = n_el//2
    elif (ex_pair_mode == 'all'):
        print("All current pairs mode")
    elif (ex_pair_mode != 1 and ex_pair_mode != n_el//2 and (1 < ex_pair_mode < n_el-1)):
        print("Custom distance between current pairs. Dist:", ex_pair_mode)
        dist = ex_pair_mode
    else:
        print("Incorrect current pair mode selected. Function returning 0.")
        return 0
    if (ex_pair_mode == 'all'):
        ex_mat = train.generateExMat(ne=n_el)
    elif spaced == True:
        ex_mat = train.orderedExMat(n_el=n_el, el_dist=dist)
    elif spaced == False:
        ex_mat = eit_scan_lines(ne=n_el, dist=dist)
    else:
        print("Something went wrong ...")
        
    if ex_mat_length is not None:
        ex_mat = ex_mat[0:ex_mat_length]
    return ex_mat
Пример #3
0
 def set_pde(self):
     # construct mesh
     self.mesh_obj,self.el_pos=mesh.create(self.n_el, bbox=self.bbox, h0=self.meshsz)
     # extract node, element
     self.pts=self.mesh_obj['node']
     self.tri=self.mesh_obj['element']
     # initialize forward solver using the unstructured mesh object and the positions of electrodes
     self.fwd=Forward(self.mesh_obj, self.el_pos)
     # boundary condition
     self.ex_mat=eit_scan_lines(self.n_el,self.el_dist)
      # count PDE solving times
     self.soln_count = np.zeros(2)
Пример #4
0
# build tetrahedron
# 3D tetrahedron must have a bbox
bbox = [[-1, -1, -1], [1, 1, 1]]
# save calling convention as distmesh 2D
ms, el_pos = mesh.create(h0=0.15, bbox=bbox)

no2xy = ms['node']
el2no = ms['element']

# report the status of the 2D mesh
quality.stats(no2xy, el2no)
""" 1. FEM forward simulations """
# setup EIT scan conditions
el_dist, step = 7, 1
ex_mat = eit_scan_lines(16, el_dist)

# calculate simulated data
fwd = Forward(ms, el_pos)

# in python, index start from 0
ex_line = ex_mat[1].ravel()

# change alpha
anomaly = [{'x': 0.40, 'y': 0.40, 'z': 0.0, 'd': 0.30, 'alpha': 100.0}]
ms_test = mesh.set_alpha(ms, anomaly=anomaly, background=1.0)
tri_perm = ms_test['alpha']
node_perm = pdeprtni(no2xy, el2no, np.real(tri_perm))

# solving once using fem
f, _ = fwd.solve_once(ex_line, tri_perm)
Пример #5
0
# show
fig, ax = plt.subplots(figsize=(6, 4))
im = ax.tripcolor(pts[:, 0],
                  pts[:, 1],
                  tri,
                  np.real(perm),
                  shading="flat",
                  cmap=plt.cm.viridis)
fig.colorbar(im)
ax.axis("equal")
ax.set_title(r"$\Delta$ Conductivities")
plt.show()
""" 2. calculate simulated data """
el_dist, step = 1, 1
ex_mat = eit_scan_lines(n_el, el_dist)
fwd = Forward(mesh_obj, el_pos)
f1 = fwd.solve_eit(ex_mat, step, perm=mesh_new["perm"], parser="std")
""" 3. solve_eit using gaussian-newton (with regularization) """
# number of stimulation lines/patterns
eit = jac.JAC(mesh_obj, el_pos, ex_mat, step, perm=1.0, parser="std")
eit.setup(p=0.25, lamb=1.0, method="lm")
# lamb = lamb * lamb_decay
ds = eit.gn(f1.v, lamb_decay=0.1, lamb_min=1e-5, maxiter=20, verbose=True)

# plot
fig, ax = plt.subplots(figsize=(6, 4))
im = ax.tripcolor(
    pts[:, 0],
    pts[:, 1],
    tri,
Пример #6
0
no2xy = ms['node']
el2no = ms['element']
alpha = ms1['alpha'] - ms['alpha']

# show alpha
fig, ax = plt.subplots(figsize=(6, 4))
im = ax.tripcolor(no2xy[:, 0], no2xy[:, 1], el2no,
                  np.real(alpha), shading='flat')
fig.colorbar(im)
ax.axis('tight')
ax.set_title(r'$\Delta$ Permitivity')

""" 2. calculate simulated data using stack ex_mat """
el_dist, step = 7, 1
n_el = len(el_pos)
ex_mat1 = eit_scan_lines(n_el, el_dist)
ex_mat2 = eit_scan_lines(n_el, 1)
ex_mat = np.vstack([ex_mat1, ex_mat2])

# forward solver
fwd = Forward(ms, el_pos)
f0 = fwd.solve(ex_mat, step, perm=ms['alpha'])
f1 = fwd.solve(ex_mat, step, perm=ms1['alpha'])

""" 3. solving using dynamic EIT """
# number of stimulation lines/patterns
eit = jac.JAC(ms, el_pos, ex_mat=ex_mat, step=step, parser='std')
eit.setup(p=0.40, lamb=1e-3, method='kotre')
ds = eit.solve(f1.v, f0.v)

""" 4. plot """
Пример #7
0
no2xy = ms['node']
el2no = ms['element']
alpha = ms1['alpha'] - ms['alpha']

# show alpha
fig = plt.figure()
plt.tripcolor(no2xy[:, 0], no2xy[:, 1], el2no,
              np.real(alpha), shading='flat')
plt.colorbar()
plt.title(r'$\Delta$ Permitivity')
fig.set_size_inches(6, 4.5)

""" 2. calculate simulated data using stack exMtx """
elDist, step = 7, 1
numEl = len(elPos)
exMtx1 = eit_scan_lines(numEl, elDist)
exMtx2 = eit_scan_lines(numEl, 1)
exMtx = np.vstack([exMtx1, exMtx2])

# forward solver
fwd = forward(ms, elPos)
f0 = fwd.solve(exMtx, step, perm=ms['alpha'])
f1 = fwd.solve(exMtx, step, perm=ms1['alpha'])

""" 3. solving using dynamic EIT """
# number of excitation lines & excitation patterns
eit = jac.JAC(ms, elPos, exMtx=exMtx, step=step,
              p=0.40, lamb=1e-3,
              parser='std', method='kotre')
ds = eit.solve(f1.v, f0.v)
Пример #8
0
ms1 = mesh.set_alpha(ms, anom=anomaly, background=1.0)
alpha = np.real(ms1['alpha'] - ms0['alpha'])

# show alpha
fig = plt.figure()
plt.tripcolor(no2xy[:, 0], no2xy[:, 1], el2no, alpha,
              shading='flat', cmap=plt.cm.viridis)
plt.colorbar()
plt.title(r'$\Delta$ Conductivity')
fig.set_size_inches(6, 4)
plt.axis('equal')

""" 2. FEM forward simulations """
# setup EIT scan conditions
elDist, step = 1, 1
exMtx = eit_scan_lines(16, elDist)

# calculate simulated data
fwd = forward(ms, elPos)
f0 = fwd.solve(exMtx, step=step, perm=ms0['alpha'])
f1 = fwd.solve(exMtx, step=step, perm=ms1['alpha'])

""" 3. Construct using GREIT
"""
eit = greit.GREIT(ms, elPos, exMtx=exMtx, step=step, parser='std',
                  p=0.50, lamb=1e-4)
ds = eit.solve(f1.v, f0.v)
x, y, ds = eit.mask_value(ds, mask_value=np.NAN)

# plot
fig = plt.figure()
Пример #9
0
el2no = ms['element']
alpha = ms1['alpha']

# show
fig = plt.figure()
plt.tripcolor(no2xy[:, 0], no2xy[:, 1], el2no,
              np.real(alpha), shading='flat')
plt.colorbar()
plt.axis('equal')
plt.title(r'$\Delta$ Conductivities')
fig.set_size_inches((6, 4))
plt.show()

""" 2. calculate simulated data """
elDist, step = 1, 1
exMtx = eit_scan_lines(numEl, elDist)
fwd = forward(ms, elPos)
f1 = fwd.solve(exMtx, step, perm=ms1['alpha'])

""" 3. solve using gaussian-newton """
# number of excitation lines & excitation patterns
eit = jac.JAC(ms, elPos, exMtx, step,
              perm=1.0, parser='std',
              p=0.25, lamb=1e-4, method='kotre')
ds = eit.gn_solve(f1.v, maxiter=6, verbose=True)

# plot
fig = plt.figure()
plt.tripcolor(no2xy[:, 0], no2xy[:, 1], el2no, np.real(ds),
              shading='flat', alpha=1.0, cmap=plt.cm.viridis)
plt.colorbar()
Пример #10
0
    def solve_eit(self,
                  ex_mat=None,
                  step=1,
                  perm=None,
                  parser=None,
                  skip_jac=False):
        """
        EIT simulation, generate perturbation matrix and forward v

        Parameters
        ----------
        ex_mat: NDArray
            numLines x n_el array, stimulation matrix
        step: int
            the configuration of measurement electrodes (default: adjacent)
        perm: NDArray
            Mx1 array, initial x0. must be the same size with self.tri_perm
        parser: str
            if parser is 'fmmu', within each stimulation pattern, diff_pairs
            or boundary measurements are re-indexed and started
            from the positive stimulus electrode
            if parser is 'std', subtract_row start from the 1st electrode

        Returns
        -------
        jac: NDArray
            number of measures x n_E complex array, the Jacobian
        v: NDArray
            number of measures x 1 array, simulated boundary measures
        b_matrix: NDArray
            back-projection mappings (smear matrix)
        """
        # initialize/extract the scan lines (default: apposition)
        if ex_mat is None:
            ex_mat = eit_scan_lines(16, 8)

        # initialize the permittivity on element
        if perm is None:
            perm0 = self.tri_perm
        elif np.isscalar(perm):
            perm0 = np.ones(self.n_tri, dtype=np.float)
        else:
            assert perm.shape == (self.n_tri, )
            perm0 = perm

        # calculate f and Jacobian iteratively over all stimulation lines
        jac, v, b_matrix = [], [], []
        n_lines = ex_mat.shape[0]

        for i in range(n_lines):
            # FEM solver of one stimulation pattern, a row in ex_mat
            ex_line = ex_mat[i]
            f, jac_i = self.solve(ex_line, perm0, skip_jac)
            f_el = f[self.el_pos]

            # boundary measurements, subtract_row-voltages on electrodes
            diff_op = voltage_meter(ex_line,
                                    n_el=self.ne,
                                    step=step,
                                    parser=parser)
            v_diff = subtract_row(f_el, diff_op)
            if not skip_jac: jac_diff = subtract_row(jac_i, diff_op)

            # build bp projection matrix
            # 1. we can either smear at the center of elements, using
            #    >> fe = np.mean(f[self.tri], axis=1)
            # 2. or, simply smear at the nodes using f
            b = smear(f, f_el, diff_op)

            # append
            v.append(v_diff)
            if not skip_jac: jac.append(jac_diff)
            b_matrix.append(b)

        # update output, now you can call p.jac, p.v, p.b_matrix
        pde_result = namedtuple("pde_result", ['jac', 'v', 'b_matrix'])
        p = pde_result(jac=np.vstack(jac) if jac else jac,
                       v=np.hstack(v),
                       b_matrix=np.vstack(b_matrix))
        return p