Пример #1
0
def main(args):
    log = logging.getLogger(__name__)
    hdlr = logging.StreamHandler(sys.stdout)
    log.addHandler(hdlr)
    log.setLevel(logging.getLevelName(args.loglevel.upper()))

    data = {}
    hdr = {}
    for i, inp in enumerate(args.input[1:]):
        d, h = read(inp, inc_header=True)
        if args.normalize:
            d = vop.normalize(d)
        data[ascii_lowercase[i]] = d
        hdr[ascii_lowercase[i]] = h
    if args.eval:
        final = eval(args.input[0], globals(), data)
    else:
        final = ne.evaluate(args.input[0], local_dict=data)

    if args.apix is None:
        args.apix = hdr[ascii_lowercase[0]]['xlen'] / hdr[
            ascii_lowercase[0]]['nx']

    write(args.output, final.astype(np.single), psz=args.apix)
    return 0
Пример #2
0
def main(args):
    if args.threshold is None:
        print("Please provide a binarization threshold")
        return 1
    data, hdr = read(args.input, inc_header=True)
    mask = binarize_volume(data, args.threshold, minvol=args.minvol, fill=args.fill)
    if args.base_map is not None:
        base_map = read(args.base_map, inc_header=False)
        base_mask = binarize_volume(base_map, args.threshold, minvol=args.minvol, fill=args.fill)
        total_width = args.extend + args.edge_width
        excl_mask = binary_dilate(mask, total_width, strel=args.relion)
        base_mask = binary_dilate(base_mask, args.extend, strel=args.relion)
        base_mask = base_mask &~ excl_mask
        if args.overlap > 0:
            incl_mask = binary_dilate(base_mask, args.overlap, strel=args.relion) & excl_mask
            base_mask = base_mask | incl_mask
        mask = base_mask
    elif args.extend > 0:
        mask = binary_dilate(mask, args.extend, strel=args.relion)
    if args.close:
        se = binary_sphere(args.extend, False)
        mask = binary_closing(mask, structure=se, iterations=1)
    final = mask.astype(np.single)
    if args.edge_width != 0:
        dt = distance_transform_edt(~mask)  # Compute *outward* distance transform of mask.
        idx = (dt <= args.edge_width) & (dt > 0)  # Identify edge points by distance from mask.
        x = np.arange(1, args.edge_width + 1)  # Domain of the edge profile.
        if "sin" in args.edge_profile:
            y = np.sin(np.linspace(np.pi/2, 0, args.edge_width + 1))  # Range of the edge profile.
        f = interp1d(x, y[1:])
        final[idx] = f(dt[idx])  # Insert edge heights interpolated at distance transform values.
    write(args.output, final, psz=hdr["xlen"] / hdr["nx"])
    return 0
Пример #3
0
def main(args):
    if args.threshold is None:
        print("Please provide a binarization threshold")
        return 1
    data, hdr = read(args.input, inc_header=True)
    mask = data >= args.threshold
    if args.minvol is not None:
        mask = binary_volume_opening(mask, args.minvol)
    if args.fill:
        mask = binary_fill_holes(mask)
    if args.extend is not None:
        se = binary_sphere(args.extend, False)
        mask = binary_dilation(mask, structure=se, iterations=1)
    if args.close:
        se = binary_sphere(args.extend, False)
        mask = binary_closing(mask, structure=se, iterations=1)
    final = mask.astype(np.single)
    if args.edge_width is not None:
        dt = distance_transform_edt(
            ~mask)  # Compute *outward* distance transform of mask.
        idx = (dt <= args.edge_width) & (
            dt > 0)  # Identify edge points by distance from mask.
        x = np.arange(1, args.edge_width + 1)  # Domain of the edge profile.
        if "sin" in args.edge_profile:
            y = np.sin(np.linspace(np.pi / 2, 0, args.edge_width +
                                   1))  # Range of the edge profile.
        f = interp1d(x, y[1:])
        final[idx] = f(
            dt[idx]
        )  # Insert edge heights interpolated at distance transform values.
    write(args.output, final, psz=hdr["xlen"] / hdr["nx"])
    return 0
Пример #4
0
def main(args):
    x = mrc.read(args.input[0])
    sigma = np.zeros(x.shape)
    mu = x.copy()
    for i, f in enumerate(args.input[1:]):
        x = mrc.read(f)
        olddif = x - mu
        mu += (x - mu) / (i + 1)
        sigma += olddif * (x - mu)
    sigma_sq = np.power(sigma, 2)
    mrc.write(args.output, sigma_sq)
    if args.mean is not None:
        mrc.write(args.mean, mu)
    return 0
Пример #5
0
def main(args):
    x = mrc.read(args.input[0])
    m2 = np.zeros(x.shape)
    mu = x.copy()
    for i, f in enumerate(args.input[1:]):
        x = mrc.read(f)
        olddif = x - mu
        mu += (x - mu) / (i + 1)
        m2 += olddif * (x - mu)
    var = m2 / len(args.input)
    mrc.write(args.output, var)
    if args.mean is not None:
        mrc.write(args.mean, mu)
    return 0
Пример #6
0
def main(args):
    log = logging.getLogger(__name__)
    hdlr = logging.StreamHandler(sys.stdout)
    log.addHandler(hdlr)
    log.setLevel(logging.getLevelName(args.loglevel.upper()))

    data, hdr = read(args.input, inc_header=True)
    if args.half2 is not None:
        half2, hdr_half2 = read(args.input, inc_header=True)
        if data.shape == half2.shape:
            data += half2
        else:
            log.error("--half2 map is not the same shape as input map!")
            return 1
    final = None
    box = np.array([hdr[a] for a in ["nx", "ny", "nz"]])
    center = box // 2

    if args.fft:
        if args.final_mask is not None:
            final_mask = read(args.final_mask)
            data *= final_mask
        data_ft = vop.vol_ft(data.T, pfac=args.pfac, threads=args.threads)
        np.save(args.output, data_ft)
        return 0

    if args.transpose is not None:
        try:
            tax = [np.int64(a) for a in args.transpose.split(",")]
            data = np.transpose(data, axes=tax)
        except:
            log.error(
                "Transpose axes must be comma-separated list of three integers"
            )
            return 1

    if args.flip is not None:
        if args.flip.isnumeric():
            args.flip = int(args.flip)
        else:
            args.flip = vop.label_to_axis(args.flip)
        data = np.flip(data, axis=args.flip)

    if args.apix is None:
        args.apix = hdr["xlen"] / hdr["nx"]
        log.info("Using computed pixel size of %f Angstroms" % args.apix)

    if args.normalize:
        if args.diameter is not None:
            if args.diameter > 1.0:
                args.diameter /= args.apix * 2  # Convert Angstrom diameter to pixel radius.
        if args.reference is not None:
            ref, refhdr = read(args.reference, inc_header=True)
            final, mu, sigma = vop.normalize(data,
                                             ref=ref,
                                             return_stats=True,
                                             rmask=args.diameter)
        else:
            final, mu, sigma = vop.normalize(data,
                                             return_stats=True,
                                             rmask=args.diameter)
        log.info("Mean: %f, Standard deviation: %f" % (mu, sigma))

    if args.apix_out is not None:
        if args.scale is not None:
            log.warn("--apix-out supersedes --scale")
        args.scale = args.apix / args.apix_out
    elif args.scale is not None:
        args.apix_out = args.apix / args.scale
    elif args.boxsize is not None:
        args.scale = box[0] / np.double(args.boxsize)

    if args.apix_out is None:
        args.apix_out = args.apix

    if args.boxsize is None:
        if args.scale is None:
            args.boxsize = box[0]
            args.scale = 1
        else:
            args.boxsize = np.int(box[0] * args.scale)

    log.info("Volume will be scaled by %f to size %d @ %f A/px" %
             (args.scale, args.boxsize, args.apix_out))

    if args.target and args.transform:
        log.warn(
            "Target pose transformation will be applied after explicit matrix")
    if args.euler is not None and (args.target is not None
                                   or args.transform is not None):
        log.warn(
            "Euler transformation will be applied after target pose transformation"
        )
    if args.translate is not None and (args.euler is not None
                                       or args.target is not None
                                       or args.transform is not None):
        log.warn("Translation will be applied after other transformations")

    if args.origin is not None:
        try:
            args.origin = np.array(
                [np.double(tok) for tok in args.origin.split(",")]) / args.apix
            assert np.all(args.origin < box)
        except:
            log.error(
                "Origin must be comma-separated list of x,y,z coordinates and lie within the box"
            )
            return 1
    else:
        args.origin = center
        log.info("Origin set to box center, %s" % (args.origin * args.apix))

    if not (args.target is None and args.euler is None and args.transform is None and args.boxsize is None) \
            and vop.ismask(data) and args.spline_order != 0:
        log.warn(
            "Input looks like a mask, --spline-order 0 (nearest neighbor) is recommended"
        )

    if args.transform is not None:
        try:
            args.transform = np.array(json.loads(args.transform))
        except:
            log.error("Transformation matrix must be in JSON/Numpy format")
            return 1
        r = args.transform[:, :3]
        if args.transform.shape[1] == 4:
            t = args.transform[:, -1] / args.apix
            t = r.dot(args.origin) + t - args.origin
            t = -r.T.dot(t)
        else:
            t = 0
        log.debug("Final rotation: %s" % str(r).replace("\n", "\n" + " " * 16))
        log.debug("Final translation: %s (%f px)" %
                  (str(t), np.linalg.norm(t)))
        data = vop.resample_volume(data,
                                   r=r,
                                   t=t,
                                   ori=None,
                                   order=args.spline_order,
                                   invert=args.invert)

    if args.target is not None:
        try:
            args.target = np.array(
                [np.double(tok) for tok in args.target.split(",")]) / args.apix
        except:
            log.error(
                "Standard pose target must be comma-separated list of x,y,z coordinates"
            )
            return 1
        args.target -= args.origin
        args.target = np.where(np.abs(args.target) < 1, 0, args.target)
        ori = None if args.origin is center else args.origin - center
        r = vec2rot(args.target)
        t = np.linalg.norm(args.target)
        log.info("Euler angles are %s deg and shift is %f px" %
                 (np.rad2deg(rot2euler(r)), t))
        log.debug("Final rotation: %s" % str(r).replace("\n", "\n" + " " * 16))
        log.debug("Final translation: %s (%f px)" %
                  (str(t), np.linalg.norm(t)))
        data = vop.resample_volume(data,
                                   r=r,
                                   t=args.target,
                                   ori=ori,
                                   order=args.spline_order,
                                   invert=args.invert)

    if args.euler is not None:
        try:
            args.euler = np.deg2rad(
                np.array([np.double(tok) for tok in args.euler.split(",")]))
        except:
            log.error(
                "Eulers must be comma-separated list of phi,theta,psi angles")
            return 1
        r = euler2rot(*args.euler)
        offset = args.origin - 0.5
        offset = offset - r.T.dot(offset)
        data = affine_transform(data,
                                r.T,
                                offset=offset,
                                order=args.spline_order)

    if args.translate is not None:
        try:
            args.translate = np.array(
                [np.double(tok)
                 for tok in args.translate.split(",")]) / args.apix
        except:
            log.error(
                "Translation vector must be comma-separated list of x,y,z coordinates"
            )
            return 1
        args.translate -= args.origin
        data = shift(data, -args.translate, order=args.spline_order)

    if final is None:
        final = data

    if args.final_mask is not None:
        final_mask = read(args.final_mask)
        final *= final_mask

    if args.scale != 1 or args.boxsize != box[0]:
        final = vop.resample_volume(final,
                                    scale=args.scale,
                                    output_shape=args.boxsize,
                                    order=args.spline_order)

    write(args.output, final, psz=args.apix_out)
    return 0
Пример #7
0
def main(args):
    log = logging.getLogger(__name__)
    log.setLevel(logging.INFO)
    hdlr = logging.StreamHandler(sys.stdout)
    if args.quiet:
        hdlr.setLevel(logging.ERROR)
    elif args.verbose:
        hdlr.setLevel(logging.INFO)
    else:
        hdlr.setLevel(logging.WARN)
    log.addHandler(hdlr)

    data, hdr = read(args.input, inc_header=True)
    final = None
    box = np.array([hdr[a] for a in ["nx", "ny", "nz"]])
    center = box // 2

    if args.fft:
        data_ft = vop.vol_ft(data.T, threads=args.threads)
        np.save(args.output, data_ft)
        return 0

    if args.transpose is not None:
        try:
            tax = [np.int64(a) for a in args.transpose.split(",")]
            data = np.transpose(data, axes=tax)
        except:
            log.error(
                "Transpose axes must be comma-separated list of three integers"
            )
            return 1

    if args.normalize:
        if args.reference is not None:
            ref, refhdr = read(args.reference, inc_header=True)
            final, mu, sigma = vop.normalize(data, ref=ref, return_stats=True)
        else:
            final, mu, sigma = vop.normalize(data, return_stats=True)
        final = (data - mu) / sigma
        if args.verbose:
            log.info("Mean: %f, Standard deviation: %f" % (mu, sigma))

    if args.apix is None:
        args.apix = hdr["xlen"] / hdr["nx"]
        log.info("Using computed pixel size of %f Angstroms" % args.apix)

    if args.target and args.matrix:
        log.warn(
            "Target pose transformation will be applied after explicit matrix")
    if args.euler is not None and (args.target is not None
                                   or args.matrix is not None):
        log.warn(
            "Euler transformation will be applied after target pose transformation"
        )
    if args.translate is not None and (args.euler is not None or args.target
                                       is not None or args.matrix is not None):
        log.warn("Translation will be applied after other transformations")

    if args.origin is not None:
        try:
            args.origin = np.array(
                [np.double(tok) for tok in args.origin.split(",")]) / args.apix
            assert np.all(args.origin < box)
        except:
            log.error(
                "Origin must be comma-separated list of x,y,z coordinates and lie within the box"
            )
            return 1
    else:
        args.origin = center
        log.info("Origin set to box center, %s" % (args.origin * args.apix))

    if not (args.target is None and args.euler is None and args.matrix is None and args.boxsize is None) \
            and vop.ismask(data) and args.spline_order != 0:
        log.warn(
            "Input looks like a mask, --spline-order 0 (nearest neighbor) is recommended"
        )

    if args.matrix is not None:
        try:
            r = np.array(json.loads(args.matrix))
        except:
            log.error("Matrix format is incorrect")
            return 1
        data = vop.resample_volume(data,
                                   r=r,
                                   t=None,
                                   ori=None,
                                   order=args.spline_order)

    if args.target is not None:
        try:
            args.target = np.array(
                [np.double(tok) for tok in args.target.split(",")]) / args.apix
        except:
            log.error(
                "Standard pose target must be comma-separated list of x,y,z coordinates"
            )
            return 1
        args.target -= args.origin
        args.target = np.where(np.abs(args.target) < 1, 0, args.target)
        ori = None if args.origin is center else args.origin - args.center
        r = vec2rot(args.target)
        t = np.linalg.norm(args.target)
        log.info("Euler angles are %s deg and shift is %f px" %
                 (np.rad2deg(rot2euler(r)), t))
        data = vop.resample_volume(data,
                                   r=r,
                                   t=args.target,
                                   ori=ori,
                                   order=args.spline_order,
                                   invert=args.target_invert)

    if args.euler is not None:
        try:
            args.euler = np.deg2rad(
                np.array([np.double(tok) for tok in args.euler.split(",")]))
        except:
            log.error(
                "Eulers must be comma-separated list of phi,theta,psi angles")
            return 1
        r = euler2rot(*args.euler)
        offset = args.origin - 0.5
        offset = offset - r.T.dot(offset)
        data = affine_transform(data,
                                r.T,
                                offset=offset,
                                order=args.spline_order)

    if args.translate is not None:
        try:
            args.translate = np.array(
                [np.double(tok)
                 for tok in args.translate.split(",")]) / args.apix
        except:
            log.error(
                "Translation vector must be comma-separated list of x,y,z coordinates"
            )
            return 1
        args.translate -= args.origin
        data = shift(data, -args.translate, order=args.spline_order)

    if args.boxsize is not None:
        args.boxsize = np.double(args.boxsize)
        data = zoom(data, args.boxsize / box, order=args.spline_order)
        args.apix = args.apix * box[0] / args.boxsize

    if final is None:
        final = data

    if args.final_mask is not None:
        final_mask = read(args.final_mask)
        final *= final_mask

    write(args.output, final, psz=args.apix)
    return 0