Пример #1
0
def gaussian_draw_test():
    import os
    import numpy as np
    from pyemu import MonteCarlo,Cov,ParameterEnsemble
    from datetime import datetime
    jco = os.path.join("pst","pest.jcb")
    pst = jco.replace(".jcb",".pst")

    mc = MonteCarlo(jco=jco,pst=pst)
    num_reals = 100

    start = datetime.now()
    mc.draw(num_reals=num_reals,how="gaussian")
    print(mc.parensemble.head())
    print(datetime.now() - start)
    vals = mc.pst.parameter_data.parval1.values
    cov = Cov.from_parameter_data(mc.pst)
    start = datetime.now()
    val_array = np.random.multivariate_normal(vals, cov.as_2d,num_reals)
    print(datetime.now() - start)

    start = datetime.now()
    pe = ParameterEnsemble.from_gaussian_draw(mc.pst,cov,num_reals=num_reals)
    pet = pe._transform(inplace=False)

    pe = pet._back_transform(inplace=False)
    print(datetime.now() - start)
    print(mc.parensemble.head())
    print(pe.head())
Пример #2
0
def parfile_test():
    import os
    import numpy as np
    import pandas as pd
    from pyemu import MonteCarlo, Ensemble, ParameterEnsemble, Pst, Cov

    jco = os.path.join("pst", "pest.jcb")
    pst = jco.replace(".jcb", ".pst")

    mc = MonteCarlo(jco=jco, pst=pst)
    mc.pst.parameter_data.loc[mc.pst.par_names[1], "scale"] = 0.001
    mc.draw(10)
    mc.parensemble.to_parfiles(os.path.join("temp", "testpar"))

    pst = Pst(pst)
    pst.parameter_data = pst.parameter_data.iloc[1:]
    pst.parameter_data["test", "parmne"] = "test"

    parfiles = [
        os.path.join("temp", f) for f in os.listdir("temp") if "testpar" in f
    ]
    rnames = ["test{0}".format(i) for i in range(len(parfiles))]

    pe = ParameterEnsemble.from_parfiles(pst=pst,
                                         parfile_names=parfiles,
                                         real_names=rnames)
Пример #3
0
def fixed_par_test():
    import os
    import numpy as np
    from pyemu import MonteCarlo,ParameterEnsemble
    jco = os.path.join("pst","pest.jcb")
    pst = jco.replace(".jcb",".pst")
    mc = MonteCarlo(jco=jco,pst=pst)
    mc.pst.parameter_data.loc["mult1","partrans"] = "fixed"
    mc.draw(10)
    assert np.all(mc.parensemble.loc[:,"mult1"] ==
                  mc.pst.parameter_data.loc["mult1","parval1"])
    pe = ParameterEnsemble.from_gaussian_draw(mc.pst,mc.parcov,2)
Пример #4
0
def from_dataframe_test():
    import os
    import numpy as np
    import pandas as pd
    from pyemu import MonteCarlo,Ensemble,ParameterEnsemble,Pst, Cov

    jco = os.path.join("pst","pest.jcb")
    pst = jco.replace(".jcb",".pst")
    mc = MonteCarlo(jco=jco,pst=pst)
    names = ["par_{0}".format(_) for _ in range(10)]
    df = pd.DataFrame(np.random.random((10,mc.pst.npar)),columns=mc.pst.par_names)
    mc.parensemble = ParameterEnsemble.from_dataframe(df=df,pst=mc.pst)
    print(mc.parensemble.shape)
    mc.project_parensemble()
    mc.parensemble.to_csv(os.path.join("temp","test.csv"))

    pstc = Pst(pst)
    par = pstc.parameter_data
    par.sort_values(by="parnme",ascending=False,inplace=True)
    cov = Cov.from_parameter_data(pstc)
    pe = ParameterEnsemble.from_gaussian_draw(pst=mc.pst,cov=cov)
Пример #5
0
def from_dataframe_test():
    import os
    import numpy as np
    import pandas as pd
    from pyemu import MonteCarlo,Ensemble,ParameterEnsemble,Pst

    jco = os.path.join("pst","pest.jcb")
    pst = jco.replace(".jcb",".pst")
    mc = MonteCarlo(jco=jco,pst=pst)
    names = ["par_{0}".format(_) for _ in range(10)]
    df = pd.DataFrame(np.random.random((10,mc.pst.npar)),columns=mc.pst.par_names)
    mc.parensemble = ParameterEnsemble.from_dataframe(df=df,pst=mc.pst)
    print(mc.parensemble.shape)
    mc.project_parensemble()
    mc.parensemble.to_csv(os.path.join("temp","test.csv"))
Пример #6
0
def from_dataframe_test():
    import os
    import numpy as np
    import pandas as pd
    from pyemu import MonteCarlo,Ensemble,ParameterEnsemble,Pst

    jco = os.path.join("pst","pest.jcb")
    pst = jco.replace(".jcb",".pst")
    mc = MonteCarlo(jco=jco,pst=pst)
    names = ["par_{0}".format(_) for _ in range(10)]
    df = pd.DataFrame(np.random.random((10,mc.pst.npar)),columns=mc.pst.par_names)
    mc.parensemble = ParameterEnsemble.from_dataframe(df=df,pst=mc.pst)
    print(mc.parensemble.shape)
    mc.project_parensemble()
    mc.parensemble.to_csv(os.path.join("temp","test.csv"))
Пример #7
0
def diagonal_cov_draw_test():
    import os
    import numpy as np
    from pyemu import MonteCarlo,Cov,Pst,ParameterEnsemble
    jco = os.path.join("pst","pest.jcb")
    pst = Pst(jco.replace(".jcb",".pst"))

    mc = MonteCarlo(jco=jco,pst=pst)
    num_reals = 100
    mc.draw(num_reals,obs=True)
    print(mc.obsensemble)
    pe1 = mc.parensemble.copy()

    cov = Cov(x=mc.parcov.as_2d,names=mc.parcov.row_names)
    #print(type(cov))
    mc = MonteCarlo(jco=jco,pst=pst)
    mc.parensemble.reseed()
    mc.draw(num_reals,cov=cov)
    pe2 = mc.parensemble

    pe3 = ParameterEnsemble.from_gaussian_draw(mc.pst,num_reals=num_reals,cov=mc.parcov)
Пример #8
0
def parfile_test():
    import os
    import numpy as np
    import pandas as pd
    from pyemu import MonteCarlo, Ensemble, ParameterEnsemble, Pst, Cov

    jco = os.path.join("pst", "pest.jcb")
    pst = jco.replace(".jcb", ".pst")

    mc = MonteCarlo(jco=jco, pst=pst)
    mc.pst.parameter_data.loc[mc.pst.par_names[1], "scale"] = 0.001
    mc.draw(10)
    mc.parensemble.to_parfiles(os.path.join("temp","testpar"))

    pst = Pst(pst)
    pst.parameter_data = pst.parameter_data.iloc[1:]
    pst.parameter_data["test","parmne"] = "test"

    parfiles = [os.path.join("temp",f) for f in os.listdir("temp") if "testpar" in f]
    rnames = ["test{0}".format(i) for i in range(len(parfiles))]

    pe = ParameterEnsemble.from_parfiles(pst=pst,parfile_names=parfiles,real_names=rnames)