Пример #1
0
def preprocess_dem(dem_path, raster_path, out_directory):
    in_raster = gdal.Open(raster_path)
    dem_name = p.basename(dem_path).partition('.')[0]
    clipped_dem_path = p.join(out_directory, "{}_clipped.tif".format(dem_name))
    reproj_dem_path = p.join(out_directory, "{}_reproj.tif".format(dem_name))
    ras.reproject_image(dem_path,
                        reproj_dem_path,
                        in_raster.GetProjection(),
                        do_post_resample=False)
    ras.resample_image_in_place(
        reproj_dem_path,
        in_raster.GetGeoTransform()[1])  # Assuming square pixels
    ras.align_image_in_place(reproj_dem_path, raster_path)
    ras.clip_raster_to_intersection(reproj_dem_path, raster_path,
                                    clipped_dem_path)
    return clipped_dem_path
Пример #2
0
def create_seg_tif(working_dir,
                   search_suffix='.tif',
                   export_pre_seg_tif=False,
                   export_brightness=True):
    os.chdir(working_dir)
    with TemporaryDirectory() as td:
        for image in os.listdir("composites/10m"):
            if image.endswith(search_suffix):
                image_path_10m = os.path.join("composites/10m", image)
                image_path_20m = os.path.join("composites/20m", image)
                resample_path_20m = os.path.join(
                    td, image)  # You'll probably regret this later, roberts.
                shutil.copy(image_path_20m, resample_path_20m)
                ras.resample_image_in_place(resample_path_20m, 10)

                # Now, we do Highly Experimental Image Segmentation. Please put on your goggles.
                # SAGA, please.
                # Meatball science time
                vis_10m = gdal.Open(image_path_10m)
                vis_20m_resampled = gdal.Open(resample_path_20m)
                vis_10m_array = vis_10m.GetVirtualMemArray()
                vis_20m_array = vis_20m_resampled.GetVirtualMemArray()
                # NIR, SWIR, red
                array_to_classify = np.stack([
                    vis_10m_array[3, ...], vis_20m_array[7, ...],
                    vis_10m_array[2, ...]
                ])
                temp_pre_seg_path = os.path.join(td, "pre_seg.tif")
                #temp_seg_path = os.path.join("seg.tif")

                # shape_projection = osr.SpatialReference()
                # shape_projection.ImportFromWkt(vis_10m.GetProjection())
                # image_gt = vis_10m.GetGeoTransform()
                # ras.save_array_as_image(array_to_classify, temp_pre_seg_path, image_gt, shape_projection)
                g, arr = read_tif(intif=image_path_10m)
                create_tif(filename=temp_pre_seg_path,
                           g=g,
                           Nx=arr.shape[1],
                           Ny=arr.shape[2],
                           new_array=array_to_classify,
                           noData=0,
                           data_type=gdal.GDT_UInt32)
                out_seg_tif = os.path.join("segmentation", image)
                #segment_image(temp_pre_seg_path, out_seg_tif)

                if export_pre_seg_tif == True:
                    shutil.copy(temp_pre_seg_path,
                                os.path.join("pre_segmentation", image))

                if export_brightness == True:

                    in_value_ras = temp_pre_seg_path
                    seg_ras = out_seg_tif

                    try:
                        os.mkdir("segmentation/brightness")
                    except FileExistsError:
                        pass

                    out_value_ras = os.path.join("segmentation/brightness",
                                                 image)
                    output_filtered_value_ras = False

                    temp_reshape_for_brightness = os.path.join(
                        td, "pre_brightness.tif")

                    clip_rst_by_rst(in_tif=seg_ras,
                                    ref_tif=in_value_ras,
                                    out_tif=temp_reshape_for_brightness)
                    cal_seg_mean(
                        in_value_ras,
                        temp_reshape_for_brightness,
                        out_value_ras,
                        output_filtered_value_ras=output_filtered_value_ras)
Пример #3
0
def build_cocoa_map(working_dir,
                    path_to_aoi,
                    start_date,
                    end_date,
                    path_to_s1_image,
                    path_to_config,
                    epsg_for_map,
                    path_to_model,
                    cloud_cover=20,
                    log_path="build_cocoa_map.log",
                    use_sen2cor=False,
                    sen2cor_path=None,
                    skip_download_and_preprocess=False,
                    skip_composite=False):

    # Step 0: Get things ready. Folder structure for downloads, load credentials from config.
    fu.init_log(log_path)
    os.chdir(working_dir)
    # fu.create_file_structure(os.getcwd())
    #
    # make_directory("images/merged/10m")
    # make_directory("images/merged/20m")
    #
    # make_directory("images/stacked/with_indices")
    # make_directory("images/stacked/with_s1_seg")
    # make_directory("images/stacked/all_19bands")
    #
    # make_directory("segmentation")
    # make_directory("composites")
    # make_directory("composites/10m")
    # make_directory("composites/20m")
    #
    # make_directory("composites/10m_full")
    # make_directory("composites/20m_full")
    general_functions.make_all_dirs(working_dir)

    # Step 1: Download S2 3imagery for the timescale
    if not skip_download_and_preprocess:
        config = configparser.ConfigParser()
        config.read(path_to_config)

        images_to_download = query.check_for_s2_data_by_date(
            path_to_aoi, start_date, end_date, config, cloud_cover)
        if not use_sen2cor:
            images_to_download = query.filter_non_matching_s2_data(
                images_to_download)
        else:
            images_to_download = query.filter_to_l1_data(images_to_download)
        query.download_s2_data(images_to_download, "images/L1", "images/L2")

        # Step 2: Preprocess S2 imagery. Perform atmospheric correction if needed, stack and mask 10 and 20m bands.
        if use_sen2cor:
            ras.atmospheric_correction("images/L1"
                                       "images/L2",
                                       sen2cor_path=sen2cor_path)
        ras.preprocess_sen2_images("images/L2",
                                   "images/merged/10m",
                                   "images/L1",
                                   cloud_threshold=0,
                                   epsg=epsg_for_map,
                                   bands=("B02", "B03", "B04", "B08"),
                                   out_resolution=10)
        ras.preprocess_sen2_images("images/L2",
                                   "images/merged/20m",
                                   "images/L1",
                                   cloud_threshold=0,
                                   epsg=epsg_for_map,
                                   bands=("B02", "B03", "B04", "B05", "B06",
                                          "B07", "B8A", "B11", "B12"),
                                   out_resolution=20)

    if not skip_composite:
        # Step 2.5: Build a pair of cloud-free composites
        sort_into_tile("images/merged/10m")
        sort_into_tile("images/merged/20m")

        for tile in os.listdir("images/merged/10m"):
            tile_path = os.path.join("images/merged/10m", tile)
            this_composite_path = ras.composite_directory(
                tile_path, "composites/10m")
            new_composite_path = "{}_{}.tif".format(
                this_composite_path.rsplit('.')[0], tile)
            os.rename(this_composite_path, new_composite_path)

        for tile in os.listdir("images/merged/20m"):
            tile_path = os.path.join("images/merged/20m", tile)
            this_composite_path = ras.composite_directory(
                tile_path, "composites/20m")
            new_composite_path = "{}_{}.tif".format(
                this_composite_path.rsplit('.')[0], tile)
            os.rename(this_composite_path, new_composite_path)

    # Step 3: Generate the bands. Time for the New Bit.
    clip_to_aoi = False
    if clip_to_aoi:
        for image in os.listdir("composites/10m_full"):
            if image.endswith(".tif"):
                image_path_10m_full = os.path.join("composites/10m_full",
                                                   image)
                image_path_20m_full = os.path.join("composites/20m_full",
                                                   image)

                image_path_10m_clipped = os.path.join("composites/10m", image)
                image_path_20m_clipped = os.path.join("composites/20m", image)

                # config = configparser.ConfigParser()
                # conf = config.read(path_to_config)
                # print(conf)
                # aoi = config['cocoa_mapping']['path_to_aoi']

                aoi = "/media/ubuntu/Data/Ghana/cocoa_big/shp/cocoa_big.shp"

                ras.clip_raster(raster_path=image_path_10m_full,
                                aoi_path=aoi,
                                out_path=image_path_10m_clipped,
                                srs_id=32630)
                ras.clip_raster(raster_path=image_path_20m_full,
                                aoi_path=aoi,
                                out_path=image_path_20m_clipped,
                                srs_id=32630)

    do_segmentation = True
    if do_segmentation == True:
        for image in os.listdir("composites/10m"):
            if image.endswith(".tif"):
                with TemporaryDirectory() as td:
                    image_path_10m = os.path.join("composites/10m", image)
                    image_path_20m = os.path.join("composites/20m", image)
                    resample_path_20m_v1 = os.path.join(
                        td,
                        image)  # You'll probably regret this later, roberts.
                    shutil.copy(image_path_20m, resample_path_20m_v1)
                    ras.resample_image_in_place(resample_path_20m_v1, 10)

                    index_image_path = os.path.join(td, "index_image.tif")
                    temp_pre_seg_path = os.path.join(td, "pre_seg.tif")
                    temp_seg_path = os.path.join(td, "seg.tif")
                    temp_shp_path = os.path.join(td, "outline.shp")
                    temp_clipped_seg_path = os.path.join(td, "seg_clip.tif")

                    # This bit's your show, Qing
                    temp_s1_outline_path = os.path.join(td, "s1_outline.shp")
                    ras.get_extent_as_shp(in_ras_path=image_path_10m,
                                          out_shp_path=temp_s1_outline_path)

                    resample_path_20m = os.path.join(
                        td, image[:-4] + '_to_10moutline.tif')
                    general_functions.clip_rst(
                        in_tif=resample_path_20m_v1,
                        outline_shp=temp_s1_outline_path,
                        out_tif=resample_path_20m,
                        keep_rst_extent=False)

                    generate_veg_index_tif(image_path_10m, resample_path_20m,
                                           index_image_path)
                    ras.stack_images([index_image_path, image_path_10m],
                                     "images/stacked/with_indices/" + image)

                    # Now, we do Highly Experimental Image Segmentation. Please put on your goggles.
                    # SAGA, please.
                    # Meatball science time
                    vis_10m = gdal.Open(image_path_10m)
                    vis_20m_resampled = gdal.Open(resample_path_20m)
                    vis_10m_array = vis_10m.GetVirtualMemArray()
                    vis_20m_array = vis_20m_resampled.GetVirtualMemArray()
                    # NIR, SWIR, red
                    array_to_classify = np.stack([
                        vis_10m_array[3, ...], vis_20m_array[7, ...],
                        vis_10m_array[2, ...]
                    ])

                    g, arr = general_functions.read_tif(intif=image_path_10m)
                    general_functions.create_tif(filename=temp_pre_seg_path,
                                                 g=g,
                                                 Nx=arr.shape[1],
                                                 Ny=arr.shape[2],
                                                 new_array=array_to_classify,
                                                 noData=0,
                                                 data_type=gdal.GDT_UInt32)
                    out_segment_tif = os.path.join("segmentation", image)
                    segment_image(temp_pre_seg_path, out_segment_tif)

                    print('Generate brighness raster from the segments')
                    make_directory("segmentation/brightness")

                    out_brightness_value_ras = os.path.join(
                        "segmentation/brightness", image)
                    output_filtered_value_ras = False

                    ras.get_extent_as_shp(in_ras_path=temp_pre_seg_path,
                                          out_shp_path=temp_shp_path)

                    general_functions.clip_rst(in_tif=out_segment_tif,
                                               outline_shp=temp_shp_path,
                                               out_tif=temp_clipped_seg_path,
                                               keep_rst_extent=False)

                    cal_seg_mean(
                        temp_pre_seg_path,
                        temp_clipped_seg_path,
                        out_brightness_value_ras,
                        output_filtered_value_ras=output_filtered_value_ras)

                # image_20m_6bands_array = vis_20m_array[3:,:,:]
                # try:
                #     os.mkdir("composites/20m/20m_6bands")
                # except FileExistsError:
                #     pass
                #
                # out_20m_tif_for_stack = os.path.join("composites/20m/20m_6bands", image)
                # general_functions.create_tif(filename=out_20m_tif_for_stack,g=g,Nx=arr.shape[1],Ny=arr.shape[2],
                #                              new_array=image_20m_6bands_array,data_type=gdal.GDT_UInt16,noData=0)

    do_stack = True
    if do_stack == True:
        # Step 4: Stack the new bands with the S1, seg, and 6 band 20m rasters
        for image in os.listdir("images/stacked/with_indices"):
            if image.endswith(".tif"):
                path_to_image = os.path.join("images/stacked/with_indices",
                                             image)
                path_to_brightness_image = os.path.join(
                    "segmentation/brightness", image)
                # path_to_20m_image = os.path.join("composites/20m/20m_6bands", image)
                # ras.stack_images([path_to_image, path_to_s1_image,path_to_20m_image,out_brightness_value_ras], os.path.join("images/stacked/all_19bands", image))
                ras.stack_images([
                    path_to_image, path_to_s1_image, path_to_brightness_image
                ], os.path.join("images/stacked/with_s1_seg", image))

    #sys.exit()
    #
    # Step 5: Classify with trained model
    for image in os.listdir("images/stacked/with_s1_seg"):
        if image.endswith(".tif"):
            path_to_image = os.path.join("images/stacked/with_s1_seg", image)
            path_to_out = os.path.join("output", image)
            PYEO_model.classify_image(path_to_image, path_to_model,
                                      path_to_out)
Пример #4
0
def calculate_reflectance(raster_path, dem_path, out_raster_path, raster_datetime, is_landsat = False):

    """
    Corrects for shadow effects due to terrain features.
    Algorithm:

    * Generate slope and aspect from DEM using gdaldem
    * Calculate solar position from datatake sensing start and location of image
    * Calculate the correction factor for that image from the sun zenith angle, azimuth angle, DEM aspect and DEM slope
    * Build a mask of green areas using NDVI
    * Perform a linear regression based on that IC calculation and the contents of the L2 image to get ground slope(?)
    * Correct pixel p in original image with following: p_out = p_in - (ground_slope*(IC-cos(sun_zenith)))
    * Write to output

    Parameters
    ----------
    raster_path
        A path to the raster to correct.
    dem_path
        The path to the DEM
    out_raster_path
        The path to the output.
    raster_datetime
        A datetime.DateTime object **with timezone set**

    """
   
    with TemporaryDirectory() as td:

        in_raster = gdal.Open(raster_path)
        in_array = in_raster.GetVirtualMemArray()
        out_raster = ras.create_matching_dataset(in_raster, out_raster_path, bands=in_raster.RasterCount)
        out_array = out_raster.GetVirtualMemArray(eAccess=gdal.GA_Update)

        print("Preprocessing DEM")
        clipped_dem_path = p.join(td, "clipped_dem.tif")
        reproj_dem_path = p.join(td, "reproj_dem.tif")
        ras.reproject_image(dem_path, reproj_dem_path, in_raster.GetProjection(), do_post_resample=False)
        ras.resample_image_in_place(reproj_dem_path, in_raster.GetGeoTransform()[1])  # Assuming square pixels
        ras.clip_raster_to_intersection(reproj_dem_path, raster_path, clipped_dem_path, is_landsat)

        ic_array, zenith_array, slope_array = calculate_illumination_condition_array(clipped_dem_path, raster_datetime)
        
        if is_landsat:
            in_array = in_array.T

        if len(in_array.shape) == 2:
            in_array = np.expand_dims(in_array, 0)

        print("Calculating reflectance array")
        # Oh no, magic numbers. I think these were from the original paper? Are they for Landsat?
        ref_multi_this_band = 2.0e-5
        ref_add_this_band = -0.1
        ref_array = (ref_multi_this_band * in_array + ref_add_this_band) / _deg_cos(zenith_array.T)
        
        print("Calculating sample array")
        sample_array = build_sample_array(ref_array, slope_array, 2, 3) # THIS IS LANDAST ONLY RIGHT NOW, CHANGE LATER!
        
        band_indicies = sample_array[0, ...].nonzero()

        print("Beginning linear regression")
        for i, band in enumerate(sample_array[:, ...]):
            print("Processing band {} of {}".format(i+1, ref_array.shape[0]))
            ic_for_linregress = ic_array.T[band_indicies[0], band_indicies[1]].ravel()
            band_for_linregress = band[band_indicies[0], band_indicies[1]].ravel()
            slope, _, _, _, _ = stats.linregress(ic_for_linregress, band_for_linregress)
            corrected_band = (band - (slope*(ic_array.T - _deg_cos(zenith_array.T))))
            out_array[i, ...] = np.where(band > 0, corrected_band, ref_array[i, ...])
            

    out_array = None
    out_raster = None
    ref_array = None
    in_raster = None