Пример #1
0
def calcPET(lat, time, tmin, tmax, tmean):
    '''
    Calculates Potential Evapotranspiration using 
    Hargreaves equation (Hargreaves and Samani, 1985) 
    '''

    latrad = pt.deg2rad(lat)  #Latitude to radians
    dayofyear = pd.Series(time).dt.day.values
    etrad = []
    pet = []

    # Calculate ET radiation
    for x in np.nditer(dayofyear):
        soldec = pt.sol_dec(x)  #Solar declination
        sha = pt.sunset_hour_angle(latrad, soldec)  #Sunset hour aingle
        ird = pt.inv_rel_dist_earth_sun(
            x)  #Inverse relative distance Earth-Sun
        etrad.append(pt.et_rad(latrad, soldec, sha,
                               ird))  #Extraterrestrial radiation

    # Calculate PET using hargreaves
    for x in range(0, len(etrad)):
        pet.append(pt.hargreaves(tmin[x], tmax[x], tmean[x], etrad[x]))

    pet = np.array(pet)
    return (pet)
Пример #2
0
    def hargreaves(self, day, tmax, tmin, tmean, latitude, precipitation, Kc, Ef):
        def calculate_extraterrestial_radiation(latitude, day):
            # Calculate solar declination
            solar_declination = pyeto.sol_dec(day)
            # Calculate sunset hour angle
            sunset_hour_angle = pyeto.sunset_hour_angle(latitude, solar_declination)
            # Calculate inverse relative distance earth-sun
            inverse_relative_distance = pyeto.inv_rel_dist_earth_sun(day)
            # Calculate extraterrestial radiation
            extraterrestial_radiation = pyeto.et_rad(latitude, solar_declination,
                sunset_hour_angle, inverse_relative_distance)

            return extraterrestial_radiation

        # Calculate extraterrestial radiation
        extraterrestial_radiation = calculate_extraterrestial_radiation(latitude, day)
        # Calculate evapotranspiration
        ETo = pyeto.hargreaves(tmin, tmax, tmean, extraterrestial_radiation)
        # Predict irrigation
        prediction = (ETo * Kc - precipitation) / Ef

        return prediction > 0
Пример #3
0
			f_tmax = os.path.join(inpath,'wc2.0_30s_tmax','wc2.0_30s_tmax_'+str(month).zfill(2)+'.tif')
			#print('Loading tmax:',f_tmax)
			f=gdal.Open(f_tmax)
			rasterband = f.GetRasterBand(1)
			tmax = rasterband.ReadAsArray(yoff=i,win_ysize=1)
			#f.close()

			f_tmin = os.path.join(inpath,'wc2.0_30s_tmin','wc2.0_30s_tmin_'+str(month).zfill(2)+'.tif')
			#print('Loading tmin:',f_tmax)
			f=gdal.Open(f_tmin)
			rasterband = f.GetRasterBand(1)
			tmin = rasterband.ReadAsArray(yoff=i,win_ysize=1)
			#f.close()
			
			# pyeto gives mm/day, multiply by monthdays to get mm/month
			pet_timeslice[month-1,:] = pyeto.hargreaves(tmin,tmax,tavg, et_rad)*monthdays[month-1]

		# Sum over months to get mm/year, and write out
		pet = pet_timeslice.sum(0,keepdims=True)
		f_out.variables['pet'][i,:] = pet[0,:]

		#print(rasterband)
		# Also write data out to tiff format
		#rasterband.WriteArray(pet,yoff=i)

# Close tif datasets
#f1 = None
#f2 = None
print('done')
Пример #4
0
    def exec(self):

        log.info('[START] {}'.format("exec"))

        try:

            if (platform.system() == 'Windows'):
                # 옵션 설정
                sysOpt = {
                    # 시작/종료 시간
                    'srtDate': '2020-09-01',
                    'endDate': '2020-09-03'

                    # 경도 최소/최대/간격
                    ,
                    'lonMin': 0,
                    'lonMax': 360,
                    'lonInv': 0.5

                    # 위도 최소/최대/간격
                    ,
                    'latMin': -90,
                    'latMax': 90,
                    'latInv': 0.5
                }
            else:
                # 옵션 설정
                sysOpt = {
                    # 시작/종료 시간
                    # 'srtDate': globalVar['srtDate']
                    # , 'endDate': globalVar['endDate']
                }

            # globalVar['outPath'] = 'F:/Global Temp/aski'

            modelList = ['MRI-ESM2-0']
            for i, modelInfo in enumerate(modelList):
                log.info("[CHECK] modelInfo : {}".format(modelInfo))

                inpFile = '{}/{}/{} ssp585 2015-2100_*.nc'.format(
                    globalVar['inpPath'], serviceName, modelInfo)
                fileList = sorted(glob.glob(inpFile))

                dsData = xr.open_mfdataset(fileList)
                # dsData = dsData.sel(lon=slice(120, 150), time=slice('2015-01', '2016-12'))
                # dsData = dsData.sel(lat=slice(50, 50), lon=slice(120, 120), time=slice('2015-01', '2015-12'))

                # 월별 시간 변환
                dsData['time'] = pd.to_datetime(pd.to_datetime(
                    dsData['time'].values).strftime("%Y-%m"),
                                                format='%Y-%m')

                # 단위 설정
                dsData['tasmin'].attrs['units'] = 'degC'
                dsData['tasmax'].attrs['units'] = 'degC'
                dsData['tas'].attrs['units'] = 'degC'

                # 단위 환산을 위한 매월 마지막 날 계산
                lon1D = dsData['lon'].values
                lat1D = dsData['lat'].values
                time1D = dsData['time'].values

                timeEndMonth = []
                timeYear = dsData['time.year'].values
                timeMonth = dsData['time.month'].values

                for i in range(0, len(timeYear)):
                    timeEndMonth.append(
                        calendar.monthrange(timeYear[i], timeMonth[i])[1])

                latRad1D = pyeto.deg2rad(dsData['lat'])

                # 2022.08.13 doy 순서 변경
                # 시작 순서 1, 32, ...
                dayOfYear1D = dsData['time.dayofyear']

                latRad3D = np.tile(
                    np.transpose(np.tile(latRad1D, (len(lon1D), 1))),
                    (len(time1D), 1, 1))
                dayOfYear3D = np.transpose(
                    np.tile(dayOfYear1D, (len(lon1D), len(lat1D), 1)))

                timeEndMonth3D = np.transpose(
                    np.tile(timeEndMonth, (len(lon1D), len(lat1D), 1)))

                tmpData = xr.Dataset(
                    {
                        'timeEndMonth':
                        (('time', 'lat', 'lon'), (timeEndMonth3D).reshape(
                            len(time1D), len(lat1D), len(lon1D))),
                        'latRad': (('time', 'lat', 'lon'), (latRad3D).reshape(
                            len(time1D), len(lat1D), len(lon1D)))
                        # , 'dayOfYear': (('time', 'lat', 'lon'), (dayOfYear3D).reshape(len(time1D), len(lat1D), len(lon1D)))
                        ,
                        'doy': (('time', 'lat', 'lon'), (dayOfYear3D).reshape(
                            len(time1D), len(lat1D), len(lon1D)))
                    },
                    coords={
                        'lat': lat1D,
                        'lon': lon1D,
                        'time': time1D
                    })

                # 마지막 순서 31, 59, ...
                # tmpData['dayOfYear'] = tmpData['doy']
                tmpData['dayOfYear'] = tmpData['doy'] + timeEndMonth3D

                # ********************************************************************************************
                # FAO-56 Penman-Monteith 방법
                # ********************************************************************************************
                # https://pyeto.readthedocs.io/en/latest/fao56_penman_monteith.html 매뉴얼 참조
                # 1 W/m2 = 1 J/m2를 기준으로 MJ/day 변환
                # dsData['rsdsMJ'] = dsData['rsds'] * 86400 / (10 ** 6)
                dsData['rsdsMJ'] = dsData['rsds'] * 2592000 / (10**6)

                # 섭씨 to 켈빈
                dsData['tasKel'] = dsData['tas'] + 273.15
                dsData['tasminKel'] = dsData['tasmin'] + 273.15
                dsData['tasmaxKel'] = dsData['tasmax'] + 273.15

                dsData['svp'] = svp_from_t(dsData['tas'])
                dsData['svpMax'] = svp_from_t(dsData['tasmax'])
                dsData['svpMin'] = svp_from_t(dsData['tasmin'])

                tmpData['solDec'] = sol_dec(tmpData['dayOfYear'])
                tmpData['sha'] = sunset_hour_angle(tmpData['latRad'],
                                                   tmpData['solDec'])
                tmpData['dayLightHour'] = daylight_hours(tmpData['sha'])
                tmpData['ird'] = inv_rel_dist_earth_sun(tmpData['dayOfYear'])
                # tmpData['etRad'] = et_rad(tmpData['latRad'], tmpData['solDec'], tmpData['sha'], tmpData['ird'])
                tmpData['etRad'] = dsData['rsdsMJ']
                tmpData['csRad'] = fao.cs_rad(altitude=1.5,
                                              et_rad=tmpData['etRad'])
                dsData['deltaSvp'] = delta_svp(dsData['tas'])

                # 대기 온도 1.5 m 가정
                psy = fao.psy_const(atmos_pres=fao.atm_pressure(altitude=15))

                dsData['avp'] = fao.avp_from_rhmin_rhmax(
                    dsData['svpMax'], dsData['svpMin'], dsData['hurs'].min(),
                    dsData['hurs'].max())
                niSwRad = pyeto.net_in_sol_rad(dsData['rsdsMJ'], albedo=0.23)
                niLwRad = net_out_lw_rad(dsData['tasminKel'],
                                         dsData['tasmaxKel'], dsData['rsdsMJ'],
                                         tmpData['csRad'], dsData['avp'])
                dsData['net_rad'] = fao.net_rad(ni_sw_rad=niSwRad,
                                                no_lw_rad=niLwRad)

                # 2022.08.13
                # 상수
                # shfData = 0.336

                # 이전, 현재 대기온도를 통해 계산
                timeList = dsData['time'].values

                shfDataL1 = xr.Dataset()
                for i, timeInfo in enumerate(timeList):

                    prevYmd = (pd.to_datetime(timeInfo) +
                               pd.DateOffset(months=-1)).strftime('%Y-%m-%d')
                    nowYmd = pd.to_datetime(timeInfo).strftime('%Y-%m-%d')

                    prevData = dsData['tas'].interp(
                        time=prevYmd,
                        method='nearest',
                        kwargs={'fill_value': 'extrapolate'})
                    nowData = dsData['tas'].interp(
                        time=nowYmd,
                        method='nearest',
                        kwargs={'fill_value': 'extrapolate'})

                    shfData = pyeto.monthly_soil_heat_flux2(
                        prevData, nowData).rename('shf')
                    shfData['time'] = pd.to_datetime(timeInfo)

                    if (i == 0):
                        shfDataL1 = shfData
                    else:
                        shfDataL1 = xr.concat([shfDataL1, shfData], dim='time')

                dsData = xr.merge([dsData, shfDataL1])

                # Daily eto
                # faoRes = fao.fao56_penman_monteith(dsData['net_rad'], dsData['tasKel'], dsData['sfcWind'], dsData['svp'], dsData['avp'], dsData['deltaSvp'], psy, shf = 0)

                # Monthly eto
                faoRes = fao.fao56_penman_monteith(dsData['net_rad'],
                                                   dsData['tasKel'],
                                                   dsData['sfcWind'],
                                                   dsData['svp'],
                                                   dsData['avp'],
                                                   dsData['deltaSvp'],
                                                   psy,
                                                   shf=dsData['shf'])

                # ********************************************************************************************
                # Hargreaves 방법
                # ********************************************************************************************
                # https://xclim.readthedocs.io/en/stable/indicators_api.html 매뉴얼 참조
                # harRes = xclim.indices.potential_evapotranspiration( dsData['tasmin'], dsData['tasmax'], dsData['tas'], dsData['lat'], method='hargreaves85')

                # 1 kg/m2/s = 86400 mm/day를 기준으로 mm/month 변환
                # harResL1 = harRes * 86400.0 * tmpData['timeEndMonth']

                # https://pyeto.readthedocs.io/en/latest/thornthwaite.html 매뉴얼 참조
                harRes = pyeto.hargreaves(dsData['tasmin'], dsData['tasmax'],
                                          dsData['tas'], tmpData['etRad'])
                harResL1 = harRes

                # ********************************************************************************************
                # Thornthwaite 방법
                # ********************************************************************************************
                # https://xclim.readthedocs.io/en/stable/indicators_api.html 매뉴얼 참조
                # thwRes = xclim.indices.potential_evapotranspiration(dsData['tasmin'], dsData['tasmax'], dsData['tas'], dsData['lat'], method ='thornthwaite48')

                # 1 kg/m2/s = 86400 mm/day를 기준으로 mm/month 변환
                # thwResL1 = thwRes * 86400.0 * tmpData['timeEndMonth']

                dsData['tasAdj'] = xr.where((dsData['tas'] >= 0),
                                            dsData['tas'], 0)
                dsData['heatIdx'] = (dsData['tasAdj'] / 5.0)**1.514

                sumHeatIdx = dsData['heatIdx'].groupby('time.year').sum(
                    skipna=True)

                sumHeatIdxData = xr.Dataset()
                timeList = dsData['time'].values
                for i, timeInfo in enumerate(timeList):
                    iYear = int(pd.to_datetime(timeInfo).strftime('%Y'))

                    selHeatIdx = sumHeatIdx.sel(year=iYear).rename(
                        {'year': 'time'})
                    selHeatIdx['time'] = timeInfo

                    if (i == 0):
                        sumHeatIdxData = selHeatIdx
                    else:
                        sumHeatIdxData = xr.concat(
                            [sumHeatIdxData, selHeatIdx], dim='time')

                # 2022.08.15
                # dsData['thwConst'] = (6.75e-07 * dsData['heatIdx'] ** 3) - (7.71e-05 * dsData['heatIdx'] ** 2) + (1.792e-02 * dsData['heatIdx']) + 0.49239
                # thwRes = 1.6 * (tmpData['dayLightHour'] / 12.0) * (tmpData['timeEndMonth'] / 30.0) * ((10.0 * dsData['tasAdj'] / dsData['heatIdx']) ** dsData['thwConst']) * 10.0
                dsData['thwConst'] = (6.75e-07 * sumHeatIdxData**3) - (
                    7.71e-05 * sumHeatIdxData**2) + (1.792e-02 *
                                                     sumHeatIdxData) + 0.49239
                thwRes = 1.6 * (tmpData['dayLightHour'] /
                                12.0) * (tmpData['timeEndMonth'] / 30.0) * (
                                    (10.0 * dsData['tasAdj'] / sumHeatIdxData)
                                    **dsData['thwConst']) * 10.0

                # 0보다 작은 경우 0으로 대체
                thwRes = xr.where((thwRes >= 0), thwRes, 0)

                # ********************************************************************************************
                # 데이터 병합
                # ********************************************************************************************
                etoData = xr.Dataset(
                    {
                        'hargreaves':
                        (('time', 'lat', 'lon'), (harResL1.values).reshape(
                            len(time1D), len(lat1D), len(lon1D))),
                        'thornthwaite':
                        (('time', 'lat', 'lon'), (thwRes.values).reshape(
                            len(time1D), len(lat1D), len(lon1D))),
                        'penman-monteith':
                        (('time', 'lat', 'lon'), (faoRes.values).reshape(
                            len(time1D), len(lat1D), len(lon1D)))
                    },
                    coords={
                        'lat': lat1D,
                        'lon': lon1D,
                        'time': time1D
                    })

                # NetCDF 파일 저장
                saveFile = '{}/{}/{}_eto.nc'.format(globalVar['outPath'],
                                                    serviceName, modelInfo)
                os.makedirs(os.path.dirname(saveFile), exist_ok=True)
                etoData.to_netcdf(saveFile)
                log.info('[CHECK] saveFile : {}'.format(saveFile))

        except Exception as e:
            log.error("Exception : {}".format(e))
            raise e
        finally:
            log.info('[END] {}'.format("exec"))
def _compute_ref_eto(day_ds, lat):
    return pyeto.hargreaves(
        day_ds['TminD'], day_ds['TabsD'], day_ds['TmaxD'],
        _compute_solar_radiation(pd.to_datetime(day_ds.time.values), lat))
Пример #6
0
 def test_hargreaves(self):
     # Tested against worked example from "Estimating Evapotranspiration
     # from weather data" by Vishal K. Mehta, Arghyam/Cornell University,
     # Nov 2, 2006.
     eto = pyeto.hargreaves(tmin=28, tmax=38, tmean=35, et_rad=38.93715)
     self.assertAlmostEqual(eto, 6.1, 1)
Пример #7
0
 def test_hargreaves(self):
     # Tested against worked example from "Estimating Evapotranspiration
     # from weather data" by Vishal K. Mehta, Arghyam/Cornell University,
     # Nov 2, 2006.
     eto = pyeto.hargreaves(tmin=28, tmax=38, tmean=35, et_rad=38.93715)
     self.assertAlmostEqual(eto, 6.1, 1)