def estimate_fao56_daily(self, day_of_year, temp_c, temp_c_min, temp_c_max, tdew, elevation, latitude, rh, wind_m_s, atmos_pres): """ Estimate fao56 from weather """ sha = pyeto.sunset_hour_angle(pyeto.deg2rad(latitude), pyeto.sol_dec(day_of_year)) daylight_hours = pyeto.daylight_hours(sha) sunshine_hours = 0.8 * daylight_hours ird = pyeto.inv_rel_dist_earth_sun(day_of_year) et_rad = pyeto.et_rad(pyeto.deg2rad(latitude), pyeto.sol_dec(day_of_year), sha, ird) sol_rad = pyeto.sol_rad_from_sun_hours(daylight_hours, sunshine_hours, et_rad) net_in_sol_rad = pyeto.net_in_sol_rad(sol_rad=sol_rad, albedo=0.23) cs_rad = pyeto.cs_rad(elevation, et_rad) avp = pyeto.avp_from_tdew(tdew) net_out_lw_rad = pyeto.net_out_lw_rad( pyeto.convert.celsius2kelvin(temp_c_min), pyeto.convert.celsius2kelvin(temp_c_max), sol_rad, cs_rad, avp) net_rad = pyeto.net_rad(net_in_sol_rad, net_out_lw_rad) eto = pyeto.fao56_penman_monteith( net_rad=net_rad, t=pyeto.convert.celsius2kelvin(temp_c), ws=wind_m_s, svp=pyeto.svp_from_t(temp_c), avp=avp, delta_svp=pyeto.delta_svp(temp_c), psy=pyeto.psy_const(atmos_pres)) return eto
def calcPET(lat, time, tmin, tmax, tmean): ''' Calculates Potential Evapotranspiration using Hargreaves equation (Hargreaves and Samani, 1985) ''' latrad = pt.deg2rad(lat) #Latitude to radians dayofyear = pd.Series(time).dt.day.values etrad = [] pet = [] # Calculate ET radiation for x in np.nditer(dayofyear): soldec = pt.sol_dec(x) #Solar declination sha = pt.sunset_hour_angle(latrad, soldec) #Sunset hour aingle ird = pt.inv_rel_dist_earth_sun( x) #Inverse relative distance Earth-Sun etrad.append(pt.et_rad(latrad, soldec, sha, ird)) #Extraterrestrial radiation # Calculate PET using hargreaves for x in range(0, len(etrad)): pet.append(pt.hargreaves(tmin[x], tmax[x], tmean[x], etrad[x])) pet = np.array(pet) return (pet)
def calculate_extraterrestial_radiation(latitude, day): # Calculate solar declination solar_declination = pyeto.sol_dec(day) # Calculate sunset hour angle sunset_hour_angle = pyeto.sunset_hour_angle(latitude, solar_declination) # Calculate inverse relative distance earth-sun inverse_relative_distance = pyeto.inv_rel_dist_earth_sun(day) # Calculate extraterrestial radiation extraterrestial_radiation = pyeto.et_rad(latitude, solar_declination, sunset_hour_angle, inverse_relative_distance) return extraterrestial_radiation
def get_evap_i(lat, elev, wind, srad, tmin, tmax, tavg, month): if month == 1: J = 15 else: J = 15 + (month - 1) * 30 latitude = pyeto.deg2rad(lat) atmosphericVapourPressure = pyeto.avp_from_tmin(tmin) saturationVapourPressure = pyeto.svp_from_t(tavg) ird = pyeto.inv_rel_dist_earth_sun(J) solarDeclination = pyeto.sol_dec(J) sha = [pyeto.sunset_hour_angle(l, solarDeclination) for l in latitude] extraterrestrialRad = [ pyeto.et_rad(x, solarDeclination, y, ird) for x, y in zip(latitude, sha) ] clearSkyRad = pyeto.cs_rad(elev, extraterrestrialRad) netInSolRadnet = pyeto.net_in_sol_rad(srad * 0.001, albedo=0.23) netOutSolRadnet = pyeto.net_out_lw_rad(tmin, tmax, srad * 0.001, clearSkyRad, atmosphericVapourPressure) netRadiation = pyeto.net_rad(netInSolRadnet, netOutSolRadnet) tempKelvin = pyeto.celsius2kelvin(tavg) windSpeed2m = pyeto.wind_speed_2m(wind, 10) slopeSvp = pyeto.delta_svp(tavg) atmPressure = pyeto.atm_pressure(elev) psyConstant = pyeto.psy_const(atmPressure) return pyeto.fao56_penman_monteith(netRadiation, tempKelvin, windSpeed2m, saturationVapourPressure, atmosphericVapourPressure, slopeSvp, psyConstant, shf=0.0)
#Completar los valores de ETo for j in range(0,len(Tmean["0"])): tmin=(Tmin["0"][j]) tmink=pyeto.celsius2kelvin(tmin) tmax=(Tmax["0"][j]) tmaxk=pyeto.celsius2kelvin(tmax) t=(Tmean["0"][j]) tk=pyeto.celsius2kelvin(t) rh_mean=(HR["0"][j]) ws=(VV["0"][j]) lat=pyeto.deg2rad(lat) day=day+1 sunshine_hours=(BS["0"][j]) #Radiacion neta sol_dec=pyeto.sol_dec(day) sha=pyeto.sunset_hour_angle(lat,sol_dec) daylight_hours=pyeto.daylight_hours(sha) ird=pyeto.inv_rel_dist_earth_sun(day) et_rad=pyeto.et_rad(lat, sol_dec, sha, ird) sol_rad=pyeto.sol_rad_from_sun_hours(daylight_hours,sunshine_hours,et_rad) ni_sw_rad=pyeto.net_in_sol_rad(sol_rad, albedo=0.23) cs_rad=pyeto.cs_rad(altitude, et_rad) svp_tmin=pyeto.svp_from_t(tmin) svp_tmax=pyeto.svp_from_t(tmax) avp=pyeto.avp_from_rhmean(svp_tmin, svp_tmax, rh_mean) no_lw_rad=pyeto.net_out_lw_rad(tmink, tmaxk, sol_rad, cs_rad, avp) net_rad=pyeto.net_rad(ni_sw_rad, no_lw_rad) #Presion de vapor de saturacion svp=pyeto.svp_from_t(t) #Delta presion de vapor de saturacion delta_svp=pyeto.delta_svp(t)
def get_data_from_WU(): ###array to store the reports wu_weather_reports = [] ## today and last 6 days definition day1 = now - datetime.timedelta(days=6) day2 = now - datetime.timedelta(days=5) day3 = now - datetime.timedelta(days=4) day4 = now - datetime.timedelta(days=3) day5 = now - datetime.timedelta(days=2) day6 = now - datetime.timedelta(days=1) day7 = now #### convert dates to WU required format days = { 'day1': day1.strftime('%Y%m%d'), 'day2': day2.strftime('%Y%m%d'), 'day3': day3.strftime('%Y%m%d'), 'day4': day4.strftime('%Y%m%d'), 'day5': day5.strftime('%Y%m%d'), 'day6': day6.strftime('%Y%m%d'), 'day7': day7.strftime('%Y%m%d') } ### make API wather hisotry call for each day for day in days: url = 'http://api.wunderground.com/api/7c2ab99a0ccee978/history_{0}/q/95316.json'.format( days[day]) headers = {'content-type': 'application/JSON; charset=utf8'} response = requests.get(url, headers=headers) data = json.loads(response.text) #ETo calculation for the day using FAO-56 Penman-Monteith method lat = pyeto.deg2rad(37.585652) altitude = 38 julian_day = datetime.datetime.strptime(days.get(day), '%Y%m%d').timetuple().tm_yday sol_dec = pyeto.sol_dec(julian_day) sha = pyeto.sunset_hour_angle(lat, sol_dec) ird = pyeto.inv_rel_dist_earth_sun(julian_day) ### net radiation calculator net_rad = pyeto.et_rad(lat, sol_dec, sha, ird) temp_c = float(data["history"]["observations"][1]["tempm"]) temp_k = float(data["history"]["observations"][1]["tempi"]) humidity = float(data["history"]["observations"][1]["hum"]) dew_point = float(data["history"]["observations"][1]["dewptm"]) ws = float(data["history"]["observations"][1]["wspdm"]) #actual and saturated vapour pressure in kPH svp = pyeto.svp_from_t(temp_c) avp = pyeto.avp_from_tdew(dew_point) delta_svp = pyeto.delta_svp(temp_c) atm_pressure = pyeto.atm_pressure(altitude) psy = pyeto.psy_const(atm_pressure) #### the ETo plugin retun results in mm, it was converted to inched ETo_in_mm = pyeto.fao56_penman_monteith(net_rad, temp_k, ws, svp, avp, delta_svp, psy, shf=0.0) ETo = ETo_in_mm * 0.039370 ## insert eto value to day weather report data["history"]["observations"][1].update( {"ETo": "{0:.2f}".format(ETo)}) ###add report to report collector array wu_weather_reports.append(data["history"]["observations"][1]) #return all reports return wu_weather_reports
def etp_Thornthwaite(self, anosCalculoETP, inicioPlantioTuple): latitudeRad = deg2rad(self.estacao.latitude) temperaturaMensalAcc = np.array([]).reshape(0, 12) temperaturaDecendioAcc = np.array([]).reshape(12, 3, 0) ETPs = np.zeros([len(anosCalculoETP), 13, 4]) self.anosCalculo = anosCalculoETP # O ETP é calculado anualmente e o resultado final é a média desses cálculos # anosCalculoETP grava os anos selecionados pelo usuário para o cálculo do ETP if anosCalculoETP: for ano in anosCalculoETP: #ano = min(anosCalculoETP) ### Calcula medias mensais e decendiais de temperatura para um ano ### diaAtual = date(ano, 1, 1) temperaturaAcum = 0 temperaturaAcumMes = 0 diasNoDecendio = 0 diasNoMes = 0 temperaturaMensal = [] temperaturaDecendio = np.zeros((12, 3)) #final = date(min(anosCalculoETP)+1, inicioPlantioTuple[0], inicioPlantioTuple[1]) #print(anosCalculoETP) while (diaAtual.year == ano): #while (diaAtual.year in anosCalculoETP) and ((diaAtual)!=final): #print(diaAtual) if not np.isnan( self.dadosMeteorologicos['tmed'][diaAtual]): #print(self.dadosMeteorologicos['tmed'][diaAtual]) temperaturaAcum += self.dadosMeteorologicos['tmed'][ diaAtual] temperaturaAcumMes += self.dadosMeteorologicos['tmed'][ diaAtual] diasNoDecendio += 1 diasNoMes += 1 amanha = diaAtual + timedelta(days=1) #print(temperaturaAcum) if amanha.month != diaAtual.month: #print('trocou mes') #print(amanha.month) if diasNoMes > 0: # Corrigir temperaturas negativas temperaturaMensal.append(temperaturaAcumMes / diasNoMes * (temperaturaAcumMes >= 0)) else: temperaturaMensal.append(25) temperaturaAcumMes = 0 diasNoMes = 0 if amanha.day == 1 or amanha.day == 11 or amanha.day == 21: decendioAtual = calculosDecendiais.converterToDataDecendio( diaAtual) if diasNoDecendio > 0: temperaturaDecendio[ decendioAtual[0] - 1, decendioAtual[1] - 1] = (temperaturaAcum / diasNoDecendio) * (temperaturaAcum >= 0) else: temperaturaDecendio[decendioAtual[0] - 1, decendioAtual[1] - 1] = 25 temperaturaAcum = 0 diasNoDecendio = 0 #print(diaAtual) diaAtual = amanha ########### #print('temp Acumulada e temp Mensal') #print(temperaturaMensalAcc) #print(temperaturaDecendioAcc) temperaturaMensalAcc = np.vstack( (temperaturaMensalAcc, temperaturaMensal)) temperaturaDecendioAcc = np.dstack( (temperaturaDecendioAcc, temperaturaDecendio)) temperaturaMensalMedia = temperaturaMensal temperaturaDecendioMedia = temperaturaDecendio #print(temperaturaMensalAcc) #print(temperaturaDecendioAcc) #print(temperaturaMensalAcc) # Calcula o heat index a partir das temperaturas I = 0.0 for Tai in temperaturaMensalMedia: if Tai / 5.0 > 0.0: I += (Tai / 5.0)**1.514 a = (6.75e-07 * I**3) - (7.71e-05 * I**2) + (1.792e-02 * I) + 0.49239 #print(I) #print(a) horasDeSolAcum = 0 diasNoDecendio = 0 diaAtual = date(ano, 1, 1) while (diaAtual.year == ano): # Calcula o valor dos ETPs decendiais #while diaAtual.year == 2000: sd = sol_dec(int(diaAtual.strftime('%j'))) sha = sunset_hour_angle(latitudeRad, sd) horasDeSolAcum += daylight_hours(sha) idx = anosCalculoETP.index(ano) diasNoDecendio += 1 amanha = diaAtual + timedelta(days=1) if amanha.day == 1 or amanha.day == 11 or amanha.day == 21: horasDeSolMedia = horasDeSolAcum / diasNoDecendio decendioAtual = calculosDecendiais.converterToDataDecendio( diaAtual) #print(idx) #print(decendioAtual) #print(temperaturaDecendioMedia) ETPs[idx][decendioAtual] = 16 * ( horasDeSolMedia / 12.0) * (diasNoDecendio / 30.0) * ( (10.0 * temperaturaDecendioMedia[decendioAtual[0] - 1, decendioAtual[1] - 1] / I)**a) horasDeSolAcum = 0 diasNoDecendio = 0 diaAtual = amanha self.temperaturaMensalMedia = temperaturaMensalAcc return ETPs
def etp_Thornthwaite(self, anosCalculoETP): latitudeRad = deg2rad(self.estacao.latitude) temperaturaMensalAcc = np.array([]).reshape(0, 12) temperaturaDecendioAcc = np.array([]).reshape(12, 3, 0) ETPs = {} # O ETP é calculado anualmente e o resultado final é a média desses cálculos # anosCalculoETP grava os anos selecionados pelo usuário para o cálculo do ETP if anosCalculoETP: for ano in anosCalculoETP: ### Calcula medias mensais e decendiais de temperatura para um ano ### diaAtual = date(ano, 1, 1) temperaturaAcum = 0 temperaturaAcumMes = 0 diasNoDecendio = 0 diasNoMes = 0 temperaturaMensal = [] temperaturaDecendio = np.zeros((12, 3)) while diaAtual.year == ano: if self.dadosMeteorologicos['tmed'][diaAtual] is not None: temperaturaAcum += self.dadosMeteorologicos['tmed'][ diaAtual] temperaturaAcumMes += self.dadosMeteorologicos['tmed'][ diaAtual] diasNoDecendio += 1 diasNoMes += 1 amanha = diaAtual + timedelta(days=1) if amanha.month != diaAtual.month: if diasNoMes > 0: # Corrigir temperaturas negativas temperaturaMensal.append(temperaturaAcumMes / diasNoMes * (temperaturaAcumMes >= 0)) else: temperaturaMensal.append(25) temperaturaAcumMes = 0 diasNoMes = 0 if amanha.day == 1 or amanha.day == 11 or amanha.day == 21: decendioAtual = calculosDecendiais.converterToDataDecendio( diaAtual) if diasNoDecendio > 0: temperaturaDecendio[ decendioAtual[0] - 1, decendioAtual[1] - 1] = (temperaturaAcum / diasNoDecendio) * (temperaturaAcum >= 0) else: temperaturaDecendio[decendioAtual[0] - 1, decendioAtual[1] - 1] = 25 temperaturaAcum = 0 diasNoDecendio = 0 diaAtual = amanha ########### temperaturaMensalAcc = np.vstack( (temperaturaMensalAcc, temperaturaMensal)) temperaturaDecendioAcc = np.dstack( (temperaturaDecendioAcc, temperaturaDecendio)) temperaturaMensalMedia = np.mean(temperaturaMensalAcc, axis=0) temperaturaDecendioMedia = np.mean(temperaturaDecendioAcc, axis=2) # Calcula o heat index a partir das temperaturas self.temperaturaMensalMedia = temperaturaMensalMedia I = 0.0 for Tai in temperaturaMensalMedia: if Tai / 5.0 > 0.0: I += (Tai / 5.0)**1.514 a = (6.75e-07 * I**3) - (7.71e-05 * I**2) + (1.792e-02 * I) + 0.49239 diaAtual = date(2000, 1, 1) horasDeSolAcum = 0 diasNoDecendio = 0 # Calcula o valor dos ETPs decendiais while diaAtual.year == 2000: sd = sol_dec(int(diaAtual.strftime('%j'))) sha = sunset_hour_angle(latitudeRad, sd) horasDeSolAcum += daylight_hours(sha) diasNoDecendio += 1 amanha = diaAtual + timedelta(days=1) if amanha.day == 1 or amanha.day == 11 or amanha.day == 21: horasDeSolMedia = horasDeSolAcum / diasNoDecendio decendioAtual = calculosDecendiais.converterToDataDecendio( diaAtual) ETPs[decendioAtual] = 1.6 * (horasDeSolMedia / 12.0) * ( diasNoDecendio / 30.0) * ( (10.0 * temperaturaDecendioMedia[decendioAtual[0] - 1, decendioAtual[1] - 1] / I)**a) * 10.0 horasDeSolAcum = 0 diasNoDecendio = 0 diaAtual = amanha return ETPs
def calculate_precipitation(self, d): if "rain" in d: self.rain_day = float(d["rain"]) if "snow" in d: self.snow_day = float(d["snow"]) # def calculate_ev_fao56_factor(self, d): dt = d['dt'] factor = 0.0 if dt > d['sunrise']: if dt < d['sunset']: factor = min(float(dt - d['sunrise'])/3600.0, 1.0) else: if dt > d['sunset']: factor = (dt - d['sunrise'])/3600.0 if factor < 1.0: factor = 1.0 - factor return factor #def estimate_fao56_hourly(self, day_of_year, temp_c, tdew, elevation, latitude, rh, wind_m_s, atmos_pres): """ Estimate fao56 from weather """ sha = pyeto.sunset_hour_angle(pyeto.deg2rad(latitude), pyeto.sol_dec(day_of_year)) daylight_hours = pyeto.daylight_hours(sha) sunshine_hours = 0.8 * daylight_hours ird = pyeto.inv_rel_dist_earth_sun(day_of_year) et_rad = pyeto.et_rad(pyeto.deg2rad(latitude), pyeto.sol_dec(day_of_year), sha, ird) sol_rad = pyeto.sol_rad_from_sun_hours(daylight_hours, sunshine_hours, et_rad) net_in_sol_rad = pyeto.net_in_sol_rad(sol_rad=sol_rad, albedo=0.23) cs_rad = pyeto.cs_rad(elevation, et_rad) avp = pyeto.avp_from_tdew(tdew) #not sure if I trust this net_out_lw_rad calculation here! net_out_lw_rad = pyeto.net_out_lw_rad(temp_c-1, temp_c, sol_rad, cs_rad, avp) net_rad = pyeto.net_rad(net_in_sol_rad, net_out_lw_rad) eto = pyeto.fao56_penman_monteith( net_rad=net_rad, t=pyeto.convert.celsius2kelvin(temp_c), ws=wind_m_s, svp=pyeto.svp_from_t(temp_c), avp=avp, delta_svp=pyeto.delta_svp(temp_c), psy=pyeto.psy_const(atmos_pres)) return eto #def calculate_fao56_hourly(self, d): day_of_year = datetime.datetime.now().timetuple().tm_yday T_hr = d['temp'] t_dew = float(d["dew_point"]) pressure = d['pressure'] RH_hr = d['humidity'] u_2 = d['wind_speed'] #print("CALCULATE_FAO56:") #print("T_hr: {}".format(T_hr)) #print("t_dew: {}".format(t_dew)) #print("RH_hr: {}".format(RH_hr)) #print("u_2: {}".format(u_2)) #print("pressure: {}".format(pressure)) fao56 = self.estimate_fao56_hourly(day_of_year, T_hr, t_dew, self.elevation, LAT, RH_hr, u_2, pressure) return fao56
coastal = True altitude = 147 rh_min = 13 rh_max = 88 ws = 1.3 tmean = pyeto.daily_mean_t(tmin, tmax) atmos_pres = pyeto.atm_pressure(altitude) psy = pyeto.psy_const(atmos_pres) # Humidity svp_tmin = pyeto.svp_from_t(tmin) svp_tmax = pyeto.svp_from_t(tmax) delta_svp = pyeto.delta_svp(tmean) svp = pyeto.mean_svp(tmin, tmax) avp = pyeto.avp_from_rhmin_rhmax(svp_tmin, svp_tmax, rh_min, rh_max) # Radiation sol_dec = pyeto.sol_dec(day_of_year) sha = pyeto.sunset_hour_angle(latitude, sol_dec) ird = pyeto.inv_rel_dist_earth_sun(day_of_year) et_rad = pyeto.et_rad(latitude, sol_dec, sha, ird) cs_rad = pyeto.cs_rad(altitude, et_rad) sol_rad = pyeto.sol_rad_from_t(et_rad, cs_rad, tmin, tmax, coastal) ni_sw_rad = pyeto.net_in_sol_rad(sol_rad) no_lw_rad = pyeto.net_out_lw_rad(pyeto.celsius2kelvin(tmin), pyeto.celsius2kelvin(tmax), sol_rad, cs_rad, avp) net_rad = pyeto.net_rad(ni_sw_rad, no_lw_rad) eto = pyeto.fao56_penman_monteith(net_rad, pyeto.celsius2kelvin(tmean), ws, svp, avp, delta_svp, psy) print eto
def _compute_solar_radiation(date, lat): day_of_year = date.timetuple().tm_yday sol_dec = pyeto.sol_dec(day_of_year) sha = pyeto.sunset_hour_angle(lat, sol_dec) ird = pyeto.inv_rel_dist_earth_sun(day_of_year) return pyeto.et_rad(lat, sol_dec, sha, ird)
def get_data_from_WU(): ###array to store the reports wu_weather_reports = [] ## today and last 6 days definition day1 = now - datetime.timedelta(days=6) day2 = now - datetime.timedelta(days=5) day3 = now - datetime.timedelta(days=4) day4 = now - datetime.timedelta(days=3) day5 = now - datetime.timedelta(days=2) day6 = now - datetime.timedelta(days=1) day7 = now #### convert dates to WU required format days = { 'day1': day1.strftime('%Y%m%d'), 'day2': day2.strftime('%Y%m%d'), 'day3': day3.strftime('%Y%m%d'), 'day4': day4.strftime('%Y%m%d'), 'day5': day5.strftime('%Y%m%d'), 'day6': day6.strftime('%Y%m%d'), 'day7': day7.strftime('%Y%m%d') } ### make API wather hisotry call for each day for day in days: url = 'http://api.wunderground.com/api/7c2ab99a0ccee978/history_{0}/q/95316.json'.format(days[day]) headers = {'content-type': 'application/JSON; charset=utf8'} response = requests.get(url, headers=headers) data = json.loads(response.text) #ETo calculation for the day using FAO-56 Penman-Monteith method lat = pyeto.deg2rad(37.585652) altitude = 38 julian_day = datetime.datetime.strptime(days.get(day), '%Y%m%d').timetuple().tm_yday sol_dec = pyeto.sol_dec(julian_day) sha = pyeto.sunset_hour_angle(lat, sol_dec) ird = pyeto.inv_rel_dist_earth_sun(julian_day) ### net radiation calculator net_rad = pyeto.et_rad(lat, sol_dec, sha, ird) temp_c = float(data["history"]["observations"][1]["tempm"]) temp_k = float(data["history"]["observations"][1]["tempi"]) humidity = float(data["history"]["observations"][1]["hum"]) dew_point = float(data["history"]["observations"][1]["dewptm"]) ws = float(data["history"]["observations"][1]["wspdm"]) #actual and saturated vapour pressure in kPH svp = pyeto.svp_from_t(temp_c) avp = pyeto.avp_from_tdew(dew_point) delta_svp = pyeto.delta_svp(temp_c) atm_pressure = pyeto.atm_pressure(altitude) psy = pyeto.psy_const(atm_pressure) #### the ETo plugin retun results in mm, it was converted to inched ETo_in_mm = pyeto.fao56_penman_monteith(net_rad, temp_k, ws, svp, avp, delta_svp, psy, shf=0.0) ETo = ETo_in_mm * 0.039370 ## insert eto value to day weather report data["history"]["observations"][1].update({"ETo": "{0:.2f}".format(ETo)}) ###add report to report collector array wu_weather_reports.append(data["history"]["observations"][1]) #return all reports return wu_weather_reports
def test_sunset_hour_angle(self): # Test based on example 8, p.80 of FAO paper sha = pyeto.sunset_hour_angle(convert.deg2rad(-20), 0.120) self.assertAlmostEqual(sha, 1.527, 3)