Пример #1
0
def pedestal(x, mu_p, sigma_p, p, A, mu, sigma):
    """
    The pedestal part of a SPE charge spectrum

    """

    return fit.gauss(x, mu_p, sigma_p, 1)
Пример #2
0
def pedestal_fit(filename, nbins, fig=None):
    """
    Fit a pedestal to measured waveform data
    One shot function for
    * integrating the charges
    * making a histogram
    * fitting a simple gaussian to the pedestal
    * calculating mu
        P(hit) = (N_hit/N_all) = exp(QExCExLY)
        where P is the probability for a hit, QE is quantum efficiency,
        CE is the collection efficiency and
        LY the (unknown) light yield

    Args:
        filename (str): Name of the file with waveform data
        nbins (int): number of bins for the underlaying charge histogram

    """

    head, wf = tools.load_waveform(filename)
    charges = -1e12 * tools.integrate_wf(head, wf)
    plt.plot_waveform(head, tools.average_wf(wf))
    p.savefig(filename.replace(".npy", ".wf.pdf"))
    one_gauss = lambda x, n, y, z: n * gauss(x, y, z, 1)
    ped_mod = Model(one_gauss, (1000, -.1, 1))
    ped_mod.add_data(charges, nbins, create_distribution=True, normalize=False)
    ped_mod.fit_to_data(silent=True)
    fig = ped_mod.plot_result(add_parameter_text=((r"$\mu_{{ped}}$& {:4.2e}\\", 1), \
                                                  (r"$\sigma_{{ped}}$& {:4.2e}\\", 2)), \
                              xlabel=r"$Q$ [pC]", ymin=1, xmax=8, model_alpha=.2, fig=fig, ylabel="events")

    ax = fig.gca()
    n_hit = abs(ped_mod._distribution.bincontent - ped_mod.prediction(ped_mod.xs)).sum()
    ax.grid(1)
    bins = np.linspace(min(charges), max(charges), nbins)
    data = d.factory.hist1d(charges, bins)
    n_pedestal = ped_mod._distribution.stats.nentries - n_hit

    mu = -1 * np.log(n_pedestal / ped_mod._distribution.stats.nentries)

    print("==============")
    print("All waveforms: {:4.2f}".format(ped_mod._distribution.stats.nentries))
    print("HIt waveforms: {:4.2f}".format(n_hit))
    print("NoHit waveforms: {:4.2f}".format(n_pedestal))
    print("mu = -ln(N_PED/N_TRIG) = {:4.2e}".format(mu))

    ax.fill_between(ped_mod.xs, 1e-4, ped_mod.prediction(ped_mod.xs),\
                    facecolor=PALETTE[2], alpha=.2)
    p.savefig(filename.replace(".npy", ".pdf"))

    return ped_mod
Пример #3
0
def single_PE_response(x, mu_p, sigma_p, p, A, mu, sigma):
    """
    The SPE charge response
    """
    # I am not sure here, according to the paper it would be sqrt(sigma)
    # however, how this is defined it makes no sense here
    # What about erf then? Is it wrong?
    spe_0 = fit.gauss((x - (mu_p * np.ones(len(x)))), mu, sigma, 1)
    #spe_0 = (1/np.sqrt(2*sigma*np.pi))
    spe_0 *= (1 - p) / (0.5 * (1 + erf(mu / (np.sqrt(2) * sigma))))

    # only use in the case of no folding
    #result[x <= mu_p] = 0
    return spe_0
Пример #4
0
def get_n_hit(charges, nbins=200):
    """
    Identify how many events are in the pedestal of a charge response 
    spectrum.

    Args:
        charges (np.ndarray): The measured charges
        nbins (int): number of bins to use

    Returns:
        tuple (n_hit, n_all)
    """
    one_gauss = lambda x, n, y, z: n * gauss(x, y, z, 1)
    ped_mod = Model(one_gauss, (1000, -.1, 1))
    ped_mod.add_data(charges,
                     nbins=nbins,
                     normalize=False,
                     create_distribution=True)
    ped_mod.fit_to_data(silent=True)
    n_hit = abs(ped_mod.data - ped_mod.prediction(ped_mod.xs)).sum()
    n_pedestal = ped_mod._distribution.stats.nentries - n_hit
    n_all = ped_mod._distribution.stats.nentries
    return n_hit, n_all
Пример #5
0
 def m_i(x, mu_p, sigma_p, p, A, mu, sigma):
     # no fit here
     mu_m = ((1 - p) * mu) + (p * A)
     sigma_m = ((1 - p) * (sigma**2 + mu**2)) + (2 * p * (A**2)) - (mu_m**2)
     response = fit.gauss(x - mu_p, mu_m, sigma_m, n)
     return response