def force_reset(self): self._fileindex = PyFileIndex(path=self._project, filter_function=filter_function) df = pandas.DataFrame(self.init_table(fileindex=self._fileindex.dataframe)) if len(df) != 0: self._job_table = df[np.array(self._columns)] else: self._job_table = pandas.DataFrame({k: [] for k in self._columns})
def setUpClass(cls): cls.fi_with_filter = PyFileIndex(path=".", filter_function=filter_function) cls.fi_without_filter = PyFileIndex(path=".") cls.fi_debug = PyFileIndex(path=".", filter_function=filter_function, debug=True) cls.sleep_period = 5
def __init__(self, working_directory=".", job_class=None, cores=1, pysqa_config=None): self.working_directory = os.path.abspath(working_directory) if sys.version_info[0] >= 3: os.makedirs(self.working_directory, exist_ok=True) else: if not os.path.exists(self.working_directory): os.makedirs(self.working_directory) self._fileindex = PyFileIndex(path=self.working_directory, filter_function=filter_function) self._job_class = job_class self._results_df = None self._broken_jobs = [] self._cores = cores self._job_name_function = None self.job = SciSweeperJob self._pysqa = None self.pysqa = pysqa_config self._job_id_lst = []
def copy_files_to_archive(directory_to_transfer, archive_directory, compressed=True): if archive_directory[-7:] == ".tar.gz": archive_directory = archive_directory[:-7] if not compressed: compressed = True if directory_to_transfer[-1] != "/": directory_to_transfer = os.path.basename(directory_to_transfer) else: directory_to_transfer = os.path.basename(directory_to_transfer[:-1]) # print("directory to transfer: "+directory_to_transfer) pfi = PyFileIndex(path=directory_to_transfer, filter_function=filter_function) df_files = pfi.dataframe[~pfi.dataframe.is_directory] # Create directories dir_lst = generate_list_of_directories( df_files=df_files, directory_to_transfer=directory_to_transfer, archive_directory=archive_directory, ) # print(dir_lst) for d in dir_lst: os.makedirs(d, exist_ok=True) # Copy files dir_name_transfer = getdir(path=directory_to_transfer) for f in df_files.path.values: copyfile( f, os.path.join( archive_directory, dir_name_transfer, os.path.relpath(f, directory_to_transfer), ), ) if compressed: compress_dir(archive_directory)
class SciSweeper(object): def __init__(self, working_directory=".", job_class=None, cores=1, pysqa_config=None): self.working_directory = os.path.abspath(working_directory) if sys.version_info[0] >= 3: os.makedirs(self.working_directory, exist_ok=True) else: if not os.path.exists(self.working_directory): os.makedirs(self.working_directory) self._fileindex = PyFileIndex(path=self.working_directory, filter_function=filter_function) self._job_class = job_class self._results_df = None self._broken_jobs = [] self._cores = cores self._job_name_function = None self.job = SciSweeperJob self._pysqa = None self.pysqa = pysqa_config self._job_id_lst = [] @property def pysqa(self): return self._pysqa @pysqa.setter def pysqa(self, pysqa_config): if isinstance(pysqa_config, str): self._pysqa = QueueAdapter(pysqa_config) else: self._pysqa = pysqa_config @property def cores(self): return self._cores @cores.setter def cores(self, cores): self._cores = cores @property def job_name_function(self): return self._job_name_function @job_name_function.setter def job_name_function(self, job_name_function): self._job_name_function = job_name_function @property def job_class(self): return self._job_class @job_class.setter def job_class(self, job_class): self._job_class = job_class @property def results(self): return self._results_df @property def broken_jobs(self): return self._broken_jobs def collect(self): """ Check status of the calculations and update the results table. """ self._fileindex.update() dict_lst, broken_jobs = self._check_jobs() self._results_df = pandas.DataFrame(dict_lst) self._broken_jobs = (np.array([ self._fileindex.dataframe[(~self._fileindex.dataframe.is_directory) & self._fileindex.dataframe.path.str. contains("/" + s + "/")].dirname.values for s in broken_jobs ]).flatten().tolist()) def delete_jobs_from_queue(self): """ Delete jobs from queuing system """ if self._pysqa is not None: _ = [ self.pysqa.delete_job(process_id=j[0]) for j in self._job_id_lst ] def get_job_status(self): """ Get job status from queuing system Returns: pandas.Dataframe/ None: Status table """ if self._pysqa is not None: status_lst = self.pysqa.get_status_of_jobs( process_id_lst=[j[0] for j in self._job_id_lst]) return pandas.DataFrame([{ "queue_id": j[0], "job_name": j[1], "status": s } for s, j in zip(status_lst, self._job_id_lst)]) def run_jobs_in_parallel(self, input_dict_lst, cores=None, job_name_function=None): """ Execute multiple SciSweeperJobs in parallel using multiprocessing.ThreadPool Args: input_dict_lst (list): List of dictionaries with input parametern cores (int/ None): number of cores to use = number of parallel threads. job_name_function (function/ None): Function which takes the input_dict and a counter as input to return the job_name as string. This can be defined by the user to have recognizable job names. """ if cores is None: cores = self._cores if job_name_function is None: job_name_function = self.job_name_function if self._pysqa is None: tp = ThreadPool(cores) else: tp = None for counter, input_dict in enumerate(tqdm(input_dict_lst)): if job_name_function is not None: job_name = job_name_function(input_dict=input_dict, counter=counter) working_directory = os.path.abspath( os.path.join(self.working_directory, job_name)) else: working_directory = os.path.abspath( os.path.join(self.working_directory, "job_" + str(counter))) if self._pysqa is None: tp.apply_async(run_parallel, (self, working_directory, input_dict)) else: self._job_id_lst.append([ self.job_class( working_directory=working_directory, input_dict=input_dict, pysqa_config=self.pysqa, cores=cores, ).run(), os.path.basename(working_directory), ]) if self._pysqa is None: tp.close() tp.join() def run_job(self, job_working_directory, input_dict): """ Run individual calculation. Args: job_working_directory (str): path to working directory input_dict (dict): dictionary with input parameters Returns: int/ None: If the job is submitted to a queuing system the queue id is returned, else it is None. """ return self._job_class( working_directory=job_working_directory, input_dict=input_dict, pysqa_config=self.pysqa, ).run() def run_collect_output(self): """ For each job in this directory and all sub directories collect the output again. Use this function after updating the collect_output function. """ for path in tqdm( self._fileindex.dataframe[~self._fileindex.dataframe. is_directory].dirname.values): self._job_class(working_directory=path).run_collect_output() self.collect() def _check_jobs(self): """ Internal helper function to check the jobs and build the results table. """ dict_lst, all_keys_lst, broken_jobs = [], [], [] for path in tqdm( self._fileindex.dataframe[~self._fileindex.dataframe. is_directory].dirname.values): job_dict = {} job_dict["dir"] = os.path.basename(path) job = self._job_class(working_directory=path) job.from_hdf() for k, v in job.input_dict.items(): job_dict[k] = v for k, v in job.output_dict.items(): job_dict[k] = v for k in job_dict.keys(): all_keys_lst.append(k) dict_lst.append(job_dict) final_keys = list(set(all_keys_lst)) for d in dict_lst: for k in final_keys: broken_flag = False if k not in d.keys(): d[k] = np.nan broken_flag = True if broken_flag: broken_jobs.append(d["dir"]) return dict_lst, broken_jobs
class FileTable(with_metaclass(Singleton)): def __init__(self, project): self._fileindex = None self._job_table = None self._project = os.path.abspath(project) self._columns = ['id', 'status', 'chemicalformula', 'job', 'subjob', 'projectpath', 'project', 'timestart', 'timestop', 'totalcputime', 'computer', 'hamilton', 'hamversion', 'parentid', 'masterid', 'username'] self.force_reset() def force_reset(self): self._fileindex = PyFileIndex(path=self._project, filter_function=filter_function) df = pandas.DataFrame(self.init_table(fileindex=self._fileindex.dataframe)) if len(df) != 0: self._job_table = df[np.array(self._columns)] else: self._job_table = pandas.DataFrame({k: [] for k in self._columns}) def init_table(self, fileindex, working_dir_lst=None): if working_dir_lst is None: working_dir_lst = [] fileindex = fileindex[~fileindex.is_directory] fileindex = fileindex.iloc[fileindex.path.values.argsort()] job_lst = [] for path, mtime in zip(fileindex.path, fileindex.mtime): job_dict = self.get_extract(path, mtime) job_dict['id'] = len(working_dir_lst) + 1 working_dir_lst.append(job_dict['project'][:-1] + job_dict['subjob'] + '_hdf5/') if job_dict['project'] in working_dir_lst: job_dict['masterid'] = working_dir_lst.index(job_dict['project']) + 1 else: job_dict['masterid'] = None job_lst.append(job_dict) return job_lst @staticmethod def get_extract(path, mtime): basename = os.path.basename(path) job = os.path.splitext(basename)[0] time = datetime.datetime.fromtimestamp(mtime) return {'status': get_job_status_from_file(hdf5_file=path, job_name=job), 'chemicalformula': None, 'job': job, 'subjob': '/' + job, 'projectpath': None, 'project': os.path.dirname(path) + '/', 'timestart': time, 'timestop': time, 'totalcputime': 0.0, 'computer': None, 'username': None, 'parentid': None, 'hamilton': get_hamilton_from_file(hdf5_file=path, job_name=job), 'hamversion': get_hamilton_version_from_file(hdf5_file=path, job_name=job)} def add_item_dict(self, par_dict): par_dict = dict((key.lower(), value) for key, value in par_dict.items()) if len(self._job_table) != 0: job_id = np.max(self._job_table.id.values) + 1 else: job_id = 1 default_values = {'id': job_id, 'status': 'initialized', 'chemicalformula': None, 'timestart': datetime.datetime.now(), 'computer': None, 'parentid': None, 'username': None, 'timestop': None, 'totalcputime': None, 'masterid': None} for k, v in default_values.items(): if k not in par_dict.keys(): par_dict[k] = v self._job_table = pandas.concat([self._job_table, pandas.DataFrame([par_dict])[self._columns]]).reset_index(drop=True) return int(par_dict['id']) def item_update(self, par_dict, item_id): if isinstance(item_id, list): item_id = item_id[0] if isinstance(item_id, str): item_id = float(item_id) for k, v in par_dict.items(): self._job_table.loc[self._job_table.id == int(item_id), k] = v def delete_item(self, item_id): item_id = int(item_id) if item_id in [int(v) for v in self._job_table.id.values]: self._job_table = self._job_table[self._job_table.id != item_id].reset_index(drop=True) else: raise ValueError def get_item_by_id(self, item_id): item_id = int(item_id) return {k: list(v.values())[0] for k, v in self._job_table[self._job_table.id == item_id].to_dict().items()} def get_items_dict(self, item_dict, return_all_columns=True): df = self._job_table if not isinstance(item_dict, dict): raise TypeError for k, v in item_dict.items(): if k in ['id', 'parentid', 'masterid']: df = df[df[k] == int(v)] elif "%" not in str(v): df = df[df[k] == v] else: df = df[df[k].str.contains(v.replace('%', ''))] df_dict = df.to_dict() if return_all_columns: return [{k: v[i] for k, v in df_dict.items()} for i in df_dict['id'].keys()] else: return [{'id': i} for i in df_dict['id'].values()] def update(self): self._fileindex.update() if len(self._job_table) != 0: files_lst, working_dir_lst = zip(*[[project + subjob[1:] + '.h5', project + subjob[1:] + '_hdf5'] for project, subjob in zip(self._job_table.project.values, self._job_table.subjob.values)]) df_new = self._fileindex.dataframe[ ~self._fileindex.dataframe.is_directory & ~self._fileindex.dataframe.path.isin(files_lst)] else: files_lst, working_dir_lst = [], [] df_new = self._fileindex.dataframe[~self._fileindex.dataframe.is_directory] if len(df_new) > 0: job_lst = self.init_table(fileindex=df_new, working_dir_lst=list(working_dir_lst)) df = pandas.DataFrame(job_lst)[self._columns] if len(files_lst) != 0 and len(working_dir_lst) != 0: self._job_table = pandas.concat([self._job_table, df]).reset_index(drop=True) else: self._job_table = df def get_db_columns(self): return self.get_table_headings() def get_table_headings(self): return self._job_table.columns.values def job_table(self, project=None, recursive=True, columns=None, all_columns=False, sort_by="id", max_colwidth=200, job_name_contains=''): if project is None: project = self._project if columns is None: columns = ["job", "project", "chemicalformula"] if all_columns: columns = self._columns if len(self._job_table) != 0: if recursive: df = self._job_table[self._job_table.project.str.contains(project)] else: df = self._job_table[self._job_table.project == project] else: df = self._job_table pandas.set_option("display.max_colwidth", max_colwidth) if len(df) == 0: return df if job_name_contains != '': df = df[df.job.str.contains(job_name_contains)] if sort_by in columns: return df[columns].sort_values(by=sort_by) return df[columns] def get_jobs(self, project=None, recursive=True, columns=None): if project is None: project = self._project if columns is None: columns = ["id", "project"] df = self.job_table(project=project, recursive=recursive, columns=columns) if len(df) == 0: dictionary = {} for key in columns: dictionary[key] = list() return dictionary # return {key: list() for key in columns} dictionary = {} for key in df.keys(): dictionary[key] = df[ key ].tolist() # ToDo: Check difference of tolist and to_list return dictionary def get_job_ids(self, project=None, recursive=True): return self.get_jobs(project=project, recursive=recursive, columns=['id'])["id"] def get_job_id(self, job_specifier, project=None): if project is None: project = self._project if isinstance(job_specifier, (int, np.integer)): return job_specifier # is id job_specifier.replace(".", "_") # if job_specifier[0] is not '/': # sub_job_name = '/' + job_specifier # else: # sub_job_name = job_specifier # job_dict = _job_dict(database, sql_query, user, project_path, recursive=False, # job=job_specifier, # sub_job_name=sub_job_name) # if len(job_dict) == 0: # job_dict = _job_dict(database, sql_query, user, project_path, recursive=True, # job=job_specifier, # sub_job_name=sub_job_name) job_id_lst = self._job_table[ (self._job_table.project == project) & (self._job_table.job == job_specifier)].id.values if len(job_id_lst) == 0: job_id_lst = self._job_table[ self._job_table.project.str.contains(project) & (self._job_table.job == job_specifier)].id.values if len(job_id_lst) == 0: return None elif len(job_id_lst) == 1: return int(job_id_lst[0]) else: raise ValueError( "job name '{0}' in this project is not unique".format(job_specifier) ) def get_child_ids(self, job_specifier, project=None, status=None): """ Get the childs for a specific job Args: database (DatabaseAccess): Database object sql_query (str): SQL query to enter a more specific request user (str): username of the user whoes user space should be searched project_path (str): root_path - this is in contrast to the project_path in GenericPath job_specifier (str): name of the master job or the master jobs job ID status (str): filter childs which match a specific status - None by default Returns: list: list of child IDs """ if project is None: project = self._project id_master = self.get_job_id(project=project, job_specifier=job_specifier) if id_master is None: return [] else: if status is not None: id_lst = self._job_table[ (self._job_table.masterid == id_master) & (self._job_table.status == status)].id.values else: id_lst = self._job_table[(self._job_table.masterid == id_master)].id.values return sorted(id_lst) def set_job_status(self, job_specifier, status, project=None): """ Set the status of a particular job Args: database (DatabaseAccess): Database object sql_query (str): SQL query to enter a more specific request user (str): username of the user whoes user space should be searched project_path (str): root_path - this is in contrast to the project_path in GenericPath job_specifier (str): name of the job or job ID status (str): job status can be one of the following ['initialized', 'appended', 'created', 'submitted', 'running', 'aborted', 'collect', 'suspended', 'refresh', 'busy', 'finished'] """ if project is None: project = self._project job_id = self.get_job_id(project=project, job_specifier=job_specifier) self._job_table.loc[self._job_table.id == job_id, 'status'] = status db_entry = self.get_item_by_id(item_id=job_id) h5io.write_hdf5(db_entry["project"] + db_entry["subjob"] + '.h5', status, title=db_entry["subjob"][1:] + '/status', overwrite="update") def get_job_status(self, job_specifier, project=None): """ Get the status of a particular job Args: database (DatabaseAccess): Database object sql_query (str): SQL query to enter a more specific request user (str): username of the user whoes user space should be searched project_path (str): root_path - this is in contrast to the project_path in GenericPath job_specifier (str): name of the job or job ID Returns: str: job status can be one of the following ['initialized', 'appended', 'created', 'submitted', 'running', 'aborted', 'collect', 'suspended', 'refresh', 'busy', 'finished'] """ if project is None: project = self._project try: return self._job_table[ self._job_table.id == self.get_job_id(project=project, job_specifier=job_specifier)].status.values[0] except KeyError: return None def get_job_working_directory(self, job_specifier, project=None): """ Get the working directory of a particular job Args: database (DatabaseAccess): Database object sql_query (str): SQL query to enter a more specific request user (str): username of the user whoes user space should be searched project_path (str): root_path - this is in contrast to the project_path in GenericPath job_specifier (str): name of the job or job ID Returns: str: working directory as absolute path """ if project is None: project = self._project try: db_entry = self.get_item_by_id(item_id=self.get_job_id(project=project, job_specifier=job_specifier)) if db_entry and len(db_entry) > 0: job_name = db_entry["subjob"][1:] return os.path.join( db_entry["project"], job_name + "_hdf5", job_name, ) else: return None except KeyError: return None
class FileTable(IsDatabase, metaclass=Singleton): def __init__(self, project): self._fileindex = None self._job_table = None self._project = os.path.abspath(project) self._columns = [ "id", "status", "chemicalformula", "job", "subjob", "projectpath", "project", "timestart", "timestop", "totalcputime", "computer", "hamilton", "hamversion", "parentid", "masterid", "username", ] self.force_reset() def _get_view_mode(self): return False def force_reset(self): self._fileindex = PyFileIndex(path=self._project, filter_function=filter_function) df = pandas.DataFrame( self.init_table(fileindex=self._fileindex.dataframe)) if len(df) != 0: df.id = df.id.astype(int) self._job_table = df[np.array(self._columns)] else: self._job_table = pandas.DataFrame({k: [] for k in self._columns}) def init_table(self, fileindex, working_dir_lst=None): if working_dir_lst is None: working_dir_lst = [] fileindex = fileindex[~fileindex.is_directory] fileindex = fileindex.iloc[fileindex.path.values.argsort()] job_lst = [] for path, mtime in zip(fileindex.path, fileindex.mtime): job_dict = self.get_extract(path, mtime) job_dict["id"] = len(working_dir_lst) + 1 working_dir_lst.append(job_dict["project"][:-1] + job_dict["subjob"] + "_hdf5/") if job_dict["project"] in working_dir_lst: job_dict["masterid"] = working_dir_lst.index( job_dict["project"]) + 1 else: job_dict["masterid"] = None job_lst.append(job_dict) return job_lst def add_item_dict(self, par_dict): par_dict = dict( (key.lower(), value) for key, value in par_dict.items()) if len(self._job_table) != 0: job_id = np.max(self._job_table.id.values) + 1 else: job_id = 1 default_values = { "id": job_id, "status": "initialized", "chemicalformula": None, "timestart": datetime.datetime.now(), "computer": None, "parentid": None, "username": None, "timestop": None, "totalcputime": None, "masterid": None, } for k, v in default_values.items(): if k not in par_dict.keys(): par_dict[k] = v self._job_table = pandas.concat([ self._job_table, pandas.DataFrame([par_dict])[self._columns] ]).reset_index(drop=True) return int(par_dict["id"]) def item_update(self, par_dict, item_id): if isinstance(item_id, list): item_id = item_id[0] if isinstance(item_id, str): item_id = float(item_id) for k, v in par_dict.items(): self._job_table.loc[self._job_table.id == int(item_id), k] = v def delete_item(self, item_id): item_id = int(item_id) if item_id in [int(v) for v in self._job_table.id.values]: self._job_table = self._job_table[ self._job_table.id != item_id].reset_index(drop=True) else: raise ValueError def get_item_by_id(self, item_id): item_id = int(item_id) return { k: list(v.values())[0] for k, v in self._job_table[self._job_table.id == item_id].to_dict().items() } def get_items_dict(self, item_dict, return_all_columns=True): df = self._job_table if not isinstance(item_dict, dict): raise TypeError for k, v in item_dict.items(): if k in ["id", "parentid", "masterid"]: df = df[df[k] == int(v)] elif "%" not in str(v): df = df[df[k] == v] else: df = df[df[k].str.contains(v.replace("%", ""))] df_dict = df.to_dict() if return_all_columns: return [{k: v[i] for k, v in df_dict.items()} for i in df_dict["id"].keys()] else: return [{"id": i} for i in df_dict["id"].values()] def update(self): self._job_table.status = [ self._get_job_status_from_hdf5(job_id) for job_id in self._job_table.id.values ] self._fileindex.update() if len(self._job_table) != 0: files_lst, working_dir_lst = zip(*[[ project + subjob[1:] + ".h5", project + subjob[1:] + "_hdf5" ] for project, subjob in zip(self._job_table.project.values, self._job_table.subjob.values)]) df_new = self._fileindex.dataframe[ ~self._fileindex.dataframe.is_directory & ~self._fileindex.dataframe.path.isin(files_lst)] else: files_lst, working_dir_lst = [], [] df_new = self._fileindex.dataframe[~self._fileindex.dataframe. is_directory] if len(df_new) > 0: job_lst = self.init_table(fileindex=df_new, working_dir_lst=list(working_dir_lst)) df = pandas.DataFrame(job_lst)[self._columns] if len(files_lst) != 0 and len(working_dir_lst) != 0: self._job_table = pandas.concat([self._job_table, df]).reset_index(drop=True) else: self._job_table = df def _get_table_headings(self, table_name=None): return self._job_table.columns.values def _get_job_table( self, sql_query, user, project_path=None, recursive=True, columns=None, element_lst=None, ): self.update() if project_path is None: project_path = self._project if len(self._job_table) != 0: if recursive: return self._job_table[self._job_table.project.str.contains( project_path)] else: return self._job_table[self._job_table.project == project_path] else: return self._job_table def get_jobs(self, project=None, recursive=True, columns=None): if project is None: project = self._project if columns is None: columns = ["id", "project"] df = self.job_table( sql_query=None, user=None, project_path=project, recursive=recursive, columns=columns, ) if len(df) == 0: dictionary = {} for key in columns: dictionary[key] = list() return dictionary # return {key: list() for key in columns} dictionary = {} for key in df.keys(): dictionary[key] = df[key].tolist( ) # ToDo: Check difference of tolist and to_list return dictionary def get_job_ids(self, project=None, recursive=True): return self.get_jobs(project=project, recursive=recursive, columns=["id"])["id"] def get_job_id(self, job_specifier, project=None): if project is None: project = self._project if isinstance(job_specifier, (int, np.integer)): return job_specifier # is id job_specifier.replace(".", "_") job_id_lst = self._job_table[ (self._job_table.project == project) & (self._job_table.job == job_specifier)].id.values if len(job_id_lst) == 0: job_id_lst = self._job_table[ self._job_table.project.str.contains(project) & (self._job_table.job == job_specifier)].id.values if len(job_id_lst) == 0: return None elif len(job_id_lst) == 1: return int(job_id_lst[0]) else: raise ValueError( "job name '{0}' in this project is not unique".format( job_specifier)) def get_child_ids(self, job_specifier, project=None, status=None): """ Get the childs for a specific job Args: database (DatabaseAccess): Database object sql_query (str): SQL query to enter a more specific request user (str): username of the user whoes user space should be searched project_path (str): root_path - this is in contrast to the project_path in GenericPath job_specifier (str): name of the master job or the master jobs job ID status (str): filter childs which match a specific status - None by default Returns: list: list of child IDs """ if project is None: project = self._project id_master = self.get_job_id(project=project, job_specifier=job_specifier) if id_master is None: return [] else: if status is not None: id_lst = self._job_table[ (self._job_table.masterid == id_master) & (self._job_table.status == status)].id.values else: id_lst = self._job_table[( self._job_table.masterid == id_master)].id.values return sorted(id_lst) def get_job_working_directory(self, job_id): """ Get the working directory of a particular job Args: job_id (int): Returns: str: working directory as absolute path """ try: db_entry = self.get_item_by_id(job_id) if db_entry and len(db_entry) > 0: job_name = db_entry["subjob"][1:] return os.path.join( db_entry["project"], job_name + "_hdf5", job_name, ) else: return None except KeyError: return None def _get_job_status_from_hdf5(self, job_id): db_entry = self.get_item_by_id(job_id) job_name = db_entry["subjob"][1:] return get_job_status_from_file( hdf5_file=os.path.join(db_entry["project"], job_name + ".h5"), job_name=job_name, ) def get_job_status(self, job_id): return self._job_table[self._job_table.id == job_id].status.values[0] def set_job_status(self, job_id, status): db_entry = self.get_item_by_id(item_id=job_id) self._job_table.loc[self._job_table.id == job_id, "status"] = status h5io.write_hdf5( db_entry["project"] + db_entry["subjob"] + ".h5", status, title=db_entry["subjob"][1:] + "/status", overwrite="update", ) @staticmethod def get_extract(path, mtime): basename = os.path.basename(path) job = os.path.splitext(basename)[0] time = datetime.datetime.fromtimestamp(mtime) return { "status": get_job_status_from_file(hdf5_file=path, job_name=job), "chemicalformula": None, "job": job, "subjob": "/" + job, "projectpath": None, "project": os.path.dirname(path) + "/", "timestart": time, "timestop": time, "totalcputime": 0.0, "computer": None, "username": None, "parentid": None, "hamilton": get_hamilton_from_file(hdf5_file=path, job_name=job), "hamversion": get_hamilton_version_from_file(hdf5_file=path, job_name=job), }