Пример #1
0
    def reverse(self, xyz, y=None, z=None, M=False):
        '''Convert from local cartesian C{(x, y, z)} to geodetic C{(lat, lon, height)}.

           @arg xyz: Either an L{Ecef9Tuple}, an C{(x, y, z)} 3-tuple or C{scalar}
                     local cartesian C{x} coordinate in C{meter}.
           @kwarg y: Local cartesian C{y} coordinate in C{meter} for C{scalar}
                     B{C{xyz}} and B{C{z}}.
           @kwarg z: Local cartesian  C{z} coordinate in C{meter} for C{scalar}
                     B{C{xyz}} and B{C{y}}.
           @kwarg M: Optionally, return the rotation L{EcefMatrix} (C{bool}).

           @return: An L{Ecef9Tuple}C{(x, y, z, lat, lon, height, C, M, datum)}
                    with geodetic coordinates C{(lat, lon, height)} for the given
                    geocentric ones C{(x, y, z)}, case C{C}, optional L{EcefMatrix}
                    C{M} and C{datum} if available.

           @raise EcefError: If B{C{xyz}} not L{Ecef9Tuple} or C{scalar} C{x}
                             or B{C{y}} and/or B{C{z}} not C{scalar} for C{scalar}
                             B{C{xyz}}.

           @see: Note at method L{EcefKarney.reverse}.
        '''
        xyz_n = _xyzn4(xyz, y, z, Error=EcefError)
        x, y, z = self.M.unrotate(xyz_n[:3], *self._t0[:3])  # .x, .y, .z
        t = self.ecef.reverse(x, y, z, M=M)

        m = self.M.multiply(t.M) if M else None
        r = Ecef9Tuple(x, y, z, t.lat, t.lon, t.height, t.C, m,
                       self.ecef.datum)
        return self._xnamed(r, xyz_n[3])
Пример #2
0
    def reverse(self, xyz, y=None, z=None, **no_M):  # PYCHOK unused M
        '''Convert from geocentric C{(x, y, z)} to geodetic C{(lat, lon, height)}
           using I{Rey-Jer You}'s transformation.

           @arg xyz: Either an L{Ecef9Tuple}, an C{(x, y, z)} 3-tuple or C{scalar}
                     ECEF C{x} coordinate in C{meter}.
           @kwarg y: ECEF C{y} coordinate in C{meter} for C{scalar} B{C{xyz}}
                     and B{C{z}}.
           @kwarg z: ECEF C{z} coordinate in C{meter} for C{scalar} B{C{xyz}}
                     and B{C{y}}.
           @kwarg no_M: Rotation matrix C{M} not available.

           @return: An L{Ecef9Tuple}C{(x, y, z, lat, lon, height, C, M, datum)}
                    with geodetic coordinates C{(lat, lon, height)} for the given
                    geocentric ones C{(x, y, z)}, case C{C} 1, L{EcefMatrix} C{M}
                    always C{None} and C{datum} if available.

           @raise EcefError: If B{C{xyz}} not L{Ecef9Tuple} or C{scalar} C{x}
                             or B{C{y}} and/or B{C{z}} not C{scalar} for C{scalar}
                             B{C{xyz}}.
        '''
        x, y, z, name = _xyzn4(xyz, y, z, Error=EcefError)

        x2, y2, z2 = x**2, y**2, z**2
        r2 = fsum_(x2, y2, z2)  # = hypot3(x2, y2, z2)**2

        E = self.ellipsoid
        e = sqrt(E.a2 - E.b2)
        e2 = e**2

        u = sqrt(fsum_(r2, -e2, hypot(r2 - e2, 2 * e * z)) / 2)
        p = hypot(u, e)
        q = hypot(x, y)
        B = atan2(p * z, u * q)  # beta0 = atan(p / u * z / q)
        sB, cB = sincos2(B)
        p *= E.a
        B += fsum_(u * E.b, -p, e2) * sB / (p / cB - e2 * cB)
        sB, cB = sincos2(B)

        h = hypot(z - E.b * sB, q - E.a * cB)
        if fsum_(x2, y2, z2 * E.a_b**2) < E.a2:
            h = -h  # inside ellipsoid

        r = Ecef9Tuple(
            x,
            y,
            z,
            degrees(atan2(E.a * sB, E.b * cB)),  # atan(E.a_b * tan(B))
            degrees(atan2(y, x)),
            h,
            1,  # C=1
            None,  # M=None
            self.datum)
        return self._xnamed(r, name)
Пример #3
0
    def reverse(self, xyz, y=None, z=None, **no_M):  # PYCHOK unused M
        '''Convert from geocentric C{(x, y, z)} to geodetic C{(lat, lon, height)}
           transcribed from I{Chris Veness}' U{JavaScript
           <https://www.Movable-Type.co.UK/scripts/geodesy/docs/latlon-ellipsoidal.js.html>}.

           Uses B. R. Bowring’s formulation for μm precision in concise
           form: U{'The accuracy of geodetic latitude and height equations'
           <https://www.ResearchGate.net/publication/
           233668213_The_Accuracy_of_Geodetic_Latitude_and_Height_Equations>},
           Survey Review, Vol 28, 218, Oct 1985.

           @arg xyz: Either an L{Ecef9Tuple}, an C{(x, y, z)} 3-tuple or C{scalar}
                     ECEF C{x} coordinate in C{meter}.
           @kwarg y: ECEF C{y} coordinate in C{meter} for C{scalar} B{C{xyz}} and B{C{z}}.
           @kwarg z: ECEF C{z} coordinate in C{meter} for C{scalar} B{C{xyz}} and B{C{y}}.
           @kwarg no_M: Rotation matrix C{M} not available.

           @return: An L{Ecef9Tuple}C{(x, y, z, lat, lon, height, C, M, datum)}
                    with geodetic coordinates C{(lat, lon, height)} for the given
                    geocentric ones C{(x, y, z)}, case C{C}, L{EcefMatrix} C{M}
                    always C{None} and C{datum} if available.

           @raise EcefError: If B{C{xyz}} not L{Ecef9Tuple} or C{scalar} C{x}
                             or B{C{y}} and/or B{C{z}} not C{scalar} for C{scalar}
                             B{C{xyz}}.

           @see: Ralph M. Toms U{'An Efficient Algorithm for Geocentric to Geodetic
                 Coordinate Conversion'<https://www.OSTI.gov/scitech/biblio/110235>},
                 Sept 1995 and U{'An Improved Algorithm for Geocentric to Geodetic
                 Coordinate Conversion'<https://www.OSTI.gov/scitech/servlets/purl/231228>},
                 Apr 1996, both from Lawrence Livermore National Laboratory (LLNL).
        '''
        x, y, z, name = _xyzn4(xyz, y, z, Error=EcefError)

        E = self.ellipsoid

        p = hypot(x, y)  # distance from minor axis
        r = hypot(p, z)  # polar radius
        if min(p, r) > EPS:
            # parametric latitude (Bowring eqn 17, replaced)
            t = (E.b * z) / (E.a * p) * (1 + E.e22 * E.b / r)
            c = 1 / hypot1(t)
            s = t * c

            # geodetic latitude (Bowring eqn 18)
            a = atan2(z + E.e22 * E.b * s**3, p - E.e2 * E.a * c**3)
            b = atan2(y, x)  # ... and longitude

            # height above ellipsoid (Bowring eqn 7)
            sa, ca = sincos2(a)
            #           r = E.a / E.e2s(sa)  # length of normal terminated by minor axis
            #           h = p * ca + z * sa - (E.a * E.a / r)
            h = fsum_(p * ca, z * sa, -E.a * E.e2s(sa))

            C, lat, lon = 1, degrees90(a), degrees180(b)

        # see <https://GIS.StackExchange.com/questions/28446>
        elif p > EPS:  # lat arbitrarily zero
            C, lat, lon, h = 2, 0.0, degrees180(atan2(y, x)), p - E.a

        else:  # polar lat, lon arbitrarily zero
            C, lat, lon, h = 3, copysign(90.0, z), 0.0, abs(z) - E.b

        r = Ecef9Tuple(x, y, z, lat, lon, h, C, None, self.datum)
        return self._xnamed(r, name)
Пример #4
0
    def reverse(self, xyz, y=None, z=None, M=False):
        '''Convert from geocentric C{(x, y, z)} to geodetic C{(lat, lon, height)}.

           @arg xyz: Either an L{Ecef9Tuple}, an C{(x, y, z)} 3-tuple or C{scalar}
                     ECEF C{x} coordinate in C{meter}.
           @kwarg y: ECEF C{y} coordinate in C{meter} for C{scalar} B{C{xyz}}
                     and B{C{z}}.
           @kwarg z: ECEF C{z} coordinate in C{meter} for C{scalar} B{C{xyz}}
                     and B{C{y}}.
           @kwarg M: Optionally, return the rotation L{EcefMatrix} (C{bool}).

           @return: An L{Ecef9Tuple}C{(x, y, z, lat, lon, height, C, M, datum)}
                    with geodetic coordinates C{(lat, lon, height)} for the given
                    geocentric ones C{(x, y, z)}, case C{C}, optional L{EcefMatrix}
                    C{M} and C{datum} if available.

           @raise EcefError: If B{C{xyz}} not L{Ecef9Tuple} or C{scalar} C{x}
                             or B{C{y}} and/or B{C{z}} not C{scalar} for C{scalar}
                             B{C{xyz}}.

           @note: In general, there are multiple solutions and the result
                  which minimizes C{height} is returned, i.e., C{(lat, lon)}
                  corresponds to the closest point on the ellipsoid.  If
                  there are still multiple solutions with different latitudes
                  (applies only if C{z} = 0), then the solution with C{lat} > 0
                  is returned.  If there are still multiple solutions with
                  different longitudes (applies only if C{x} = C{y} = 0) then
                  C{lon} = 0 is returned.  The returned C{height} value is not
                  below M{−E.a * (1 − E.e2) / sqrt(1 − E.e2 * sin(lat)**2)}.
                  The returned C{lon} is in the range [−180°, 180°].  Like
                  C{forward} above, M{v1 = Transpose(M) ⋅ v0}.
        '''
        x, y, z, name = _xyzn4(xyz, y, z, Error=EcefError)

        sb, cb, d = _sch3(y, x)
        h = hypot(d, z)  # distance to earth center
        if h > self._hmax:  # PYCHOK no cover
            # We are really far away (> 12M light years).  Treat the earth
            # as a point and h, above, is an acceptable approximation to the
            # height.  This avoids overflow, e.g., in the computation of d
            # below.  It's possible that h has overflowed to INF, that's OK.
            # Treat finite x, y, but r overflows to +INF by scaling by 2.
            sb, cb, r = _sch3(y / 2, x / 2)
            sa, ca, _ = _sch3(z / 2, r)
            C = 1

        elif self.e4a:
            # Treat prolate spheroids by swapping R and Z here and by switching
            # the arguments to phi = atan2(...) at the end.
            p = (d / self.a)**2
            q = self.e2m * (z / self.a)**2
            if self.f < 0:
                p, q = q, p
            r = p + q - self.e4a
            e = self.e4a * q
            if e or r > 0:
                # Avoid possible division by zero when r = 0 by multiplying
                # equations for s and t by r^3 and r, resp.
                s = e * p / 4  # s = r^3 * s
                u = r = r / 6
                r2 = r**2
                r3 = r * r2
                t3 = s + r3
                disc = s * (r3 + t3)
                if disc < 0:
                    # t is complex, but the way u is defined the result is real.
                    # There are three possible cube roots.  We choose the root
                    # which avoids cancellation.  Note, disc < 0 implies r < 0.
                    u += 2 * r * cos(atan2(sqrt(-disc), -t3) / 3)
                else:
                    # Pick the sign on the sqrt to maximize abs(T3).  This
                    # minimizes loss of precision due to cancellation.  The
                    # result is unchanged because of the way the T is used
                    # in definition of u.
                    if disc > 0:
                        t3 += copysign(sqrt(disc), t3)  # t3 = (r * t)^3
                    # N.B. cbrt always returns the real root, cbrt(-8) = -2.
                    t = cbrt(t3)  # t = r * t
                    # t can be zero; but then r2 / t -> 0.
                    if t:
                        u += t + r2 / t
                v = sqrt(u**2 + e)  # guaranteed positive
                # Avoid loss of accuracy when u < 0.  Underflow doesn't occur in
                # E.e4 * q / (v - u) because u ~ e^4 when q is small and u < 0.
                uv = (e /
                      (v - u)) if u < 0 else (u +
                                              v)  # u+v, guaranteed positive
                # Need to guard against w going negative due to roundoff in uv - q.
                w = max(0.0, self.e2a * (uv - q) / (2 * v))
                # Rearrange expression for k to avoid loss of accuracy due to
                # subtraction.  Division by 0 not possible because uv > 0, w >= 0.
                k1 = k2 = uv / (sqrt(uv + w**2) + w)
                if self.f < 0:
                    k1 -= self.e2
                else:
                    k2 += self.e2
                sa, ca, h = _sch3(z / k1, d / k2)
                h *= k1 - self.e2m
                C = 2

            else:  # e = self.e4a * q == 0 and r <= 0
                # This leads to k = 0 (oblate, equatorial plane) and k + E.e^2 = 0
                # (prolate, rotation axis) and the generation of 0/0 in the general
                # formulas for phi and h, using the general formula and division
                # by 0 in formula for h.  Handle this case by taking the limits:
                #   f > 0: z -> 0, k        ->  E.e2 * sqrt(q) / sqrt(E.e4 - p)
                #   f < 0: r -> 0, k + E.e2 -> -E.e2 * sqrt(q) / sqrt(E.e4 - p)
                q = self.e4a - p
                if self.f < 0:
                    p, q, e = q, p, -1
                else:
                    e = -self.e2m
                sa, ca, h = _sch3(sqrt(q / self.e2m), sqrt(p))
                h *= self.a * e / self.e2a
                if z < 0:
                    sa = -sa  # for tiny negative z, not for prolate
                C = 3

        else:  # self.e4a == 0
            # Treat the spherical case.  Dealing with underflow in the general
            # case with E.e2 = 0 is difficult.  Origin maps to North pole, same
            # as with ellipsoid.
            sa, ca, _ = _sch3(z if h else 1, d)
            h -= self.a
            C = 4

        r = Ecef9Tuple(x, y, z, degrees(atan2(sa, ca)), degrees(atan2(sb, cb)),
                       h, C,
                       self._Matrix(sa, ca, sb, cb) if M else None, self.datum)
        return self._xnamed(r, name)