Пример #1
0
def test_grdtrack_without_newcolname_setting(dataarray):
    """
    Run grdtrack by not passing in newcolname parameter setting.
    """
    dataframe = load_ocean_ridge_points()

    with pytest.raises(GMTInvalidInput):
        grdtrack(points=dataframe, grid=dataarray)
Пример #2
0
def test_grdtrack_without_outfile_setting(dataarray):
    """
    Run grdtrack by not passing in outfile parameter setting.
    """
    csvfile = which("@ridge.txt", download="c")

    with pytest.raises(GMTInvalidInput):
        grdtrack(points=csvfile, grid=dataarray)
Пример #3
0
def test_grdtrack_wrong_kind_of_points_input(dataarray, dataframe):
    """
    Run grdtrack using points input that is not a pandas.DataFrame (matrix) or
    file.
    """
    invalid_points = dataframe.longitude.to_xarray()

    assert data_kind(invalid_points) == "grid"
    with pytest.raises(GMTInvalidInput):
        grdtrack(points=invalid_points, grid=dataarray, newcolname="bathymetry")
Пример #4
0
def test_grdtrack_wrong_kind_of_grid_input(dataarray, dataframe):
    """
    Run grdtrack using grid input that is not as xarray.DataArray (grid) or
    file.
    """
    invalid_grid = dataarray.to_dataset()

    assert data_kind(invalid_grid) == "matrix"
    with pytest.raises(GMTInvalidInput):
        grdtrack(points=dataframe, grid=invalid_grid, newcolname="bathymetry")
Пример #5
0
def gridtrack(Longitude='', Latitude='', geotif='', geotif_name='', geotif_epsg=''):

    import pygmt
    import rioxarray
    import pandas as pd

    Longitude   = Longitude
    Latitude    = Latitude
    geotif      = geotif
    geotif_name = geotif_name
    geotif_epsg = geotif_epsg

    df             = pd.DataFrame(Longitude)
    df['Latitude'] = pd.DataFrame(Latitude)
    df.columns     = ['Longitude', 'Latitude']

    rds = rioxarray.open_rasterio(geotif)
    rds.rio.set_crs(geotif_epsg)
    rds = rds.rio.reproject("epsg:4326")
    rds = rds.squeeze('band')
    rds = rds.astype(float)
    df  = pygmt.grdtrack(df, rds, newcolname=geotif_name)
    
    raster_vals = df[geotif_name].values
    return raster_vals
    
    del df, Latitude, Longitude
    del rds
def get_crustal_thickness_points(points,
                                 grid=None,
                                 top_name='CRUST1-TOP',
                                 bottom_name='CRUST3-BOTTOM'):

    # if no grid is provided, we take the layer thickness from litho1.0
    if not grid:
        import litho1pt0 as litho

        ptlats = np.array([pt.to_lat_lon()[0] for pt in points])
        ptlons = np.array([pt.to_lat_lon()[1] for pt in points])
        top_depth = litho.layer_depth(ptlats, ptlons, top_name)
        bottom_depth = litho.layer_depth(ptlats, ptlons, bottom_name)
        layer_thickness = bottom_depth - top_depth

        return layer_thickness

    # if a grid is provided, sample using grdtrack
    else:

        ptlats = np.array([pt.to_lat_lon()[0] for pt in points])
        ptlons = np.array([pt.to_lat_lon()[1] for pt in points])
        layer_thickness = pygmt.grdtrack(points=np.vstack((ptlons, ptlats)),
                                         grid=grid,
                                         newcolname='z')

        return np.array(layer_thickness['z'])
Пример #7
0
def test_grdtrack_input_csvfile_and_ncfile_to_dataframe(expected_array):
    """
    Run grdtrack by passing in a csv file and netcdf file as inputs with a
    pandas.DataFrame output.
    """
    output = grdtrack(points=POINTS_DATA, grid="@static_earth_relief.nc")
    assert isinstance(output, pd.DataFrame)
    npt.assert_allclose(np.array(output), expected_array)
Пример #8
0
def test_grdtrack_without_outfile_setting(csvfile, ncfile):
    """
    Run grdtrack by not passing in outfile parameter setting.
    """
    output = grdtrack(points=csvfile, grid=ncfile)
    npt.assert_allclose(output.iloc[0], [-32.2971, 37.4118, -1939.748245])

    return output
Пример #9
0
def test_grdtrack_input_dataframe_and_ncfile(dataframe, expected_array):
    """
    Run grdtrack by passing in a pandas.DataFrame and netcdf file as inputs.
    """
    output = grdtrack(points=dataframe,
                      grid="@static_earth_relief.nc",
                      newcolname="bathymetry")
    assert isinstance(output, pd.DataFrame)
    assert output.columns.to_list() == ["longitude", "latitude", "bathymetry"]
    npt.assert_allclose(np.array(output), expected_array)
Пример #10
0
def test_grdtrack_without_outfile_setting():
    """
    Run grdtrack by not passing in outfile parameter setting.
    """
    csvfile = which("@ridge.txt", download="c")
    ncfile = which("@earth_relief_01d", download="a")

    output = grdtrack(points=csvfile, grid=ncfile)
    npt.assert_allclose(output.iloc[0], [-32.2971, 37.4118, -1939.748245])

    return output
Пример #11
0
def test_grdtrack_input_dataframe_and_dataarray(dataarray, dataframe):
    """
    Run grdtrack by passing in a pandas.DataFrame and xarray.DataArray as
    inputs.
    """
    output = grdtrack(points=dataframe, grid=dataarray, newcolname="bathymetry")
    assert isinstance(output, pd.DataFrame)
    assert output.columns.to_list() == ["longitude", "latitude", "bathymetry"]
    npt.assert_allclose(output.iloc[0], [-110.9536, -42.2489, -2797.394987])

    return output
Пример #12
0
def test_grdtrack_input_dataframe_and_ncfile(dataframe, ncfile):
    """
    Run grdtrack by passing in a pandas.DataFrame and netcdf file as inputs.
    """

    output = grdtrack(points=dataframe, grid=ncfile, newcolname="bathymetry")
    assert isinstance(output, pd.DataFrame)
    assert output.columns.to_list() == ["longitude", "latitude", "bathymetry"]
    npt.assert_allclose(output.iloc[0], [-32.2971, 37.4118, -1939.748245])

    return output
Пример #13
0
def test_grdtrack_input_dataframe_and_dataarray(dataarray, dataframe,
                                                expected_array):
    """
    Run grdtrack by passing in a pandas.DataFrame and xarray.DataArray as
    inputs.
    """
    output = grdtrack(points=dataframe,
                      grid=dataarray,
                      newcolname="bathymetry")
    assert isinstance(output, pd.DataFrame)
    assert output.columns.to_list() == ["longitude", "latitude", "bathymetry"]
    npt.assert_allclose(np.array(output), expected_array)
def visualize_grid_in_3D(
    df_lake: pd.DataFrame, azimuth: float, elevation: float, context
):
    """
    Create 3D plots of gridded ice surface elevation over time.
    """
    # Get 3D grid_region (xmin/xmax/ymin/ymax/zmin/zmax),
    # and calculate normalized z-values as Elevation delta relative to Cycle 3
    z_limits: tuple = (
        float(context.ds_lake.z.min()),
        float(context.ds_lake.z.max()),
    )  # original z limits
    grid_region: tuple = context.region.bounds() + z_limits

    ds_lake_diff: xr.Dataset = (
        context.ds_lake - context.ds_lake.sel(cycle_number=context.cycles[0]).z
    )
    z_diff_limits: tuple = (float(ds_lake_diff.z.min()), float(ds_lake_diff.z.max()))
    diff_grid_region: np.ndarray = np.append(arr=grid_region[:4], values=z_diff_limits)

    print(f"Elevation limits are: {z_limits}")

    # 3D plots of gridded ice surface elevation over time
    for cycle in tqdm.tqdm(iterable=context.cycles):
        time_nsec: pd.Timestamp = df_lake[f"utc_time_{cycle}"].mean()
        time_sec: str = np.datetime_as_string(arr=time_nsec.to_datetime64(), unit="s")

        grid = (
            f"figures/{context.placename}/h_corr_{context.placename}_cycle_{cycle}.nc"
        )
        points = pd.DataFrame(
            data=np.vstack(context.lake.geometry.boundary.coords.xy).T,
            columns=("x", "y"),
        )
        outline_points = pygmt.grdtrack(points=points, grid=grid, newcolname="z")
        outline_points["z"] = outline_points.z.fillna(value=outline_points.z.median())

        fig = deepicedrain.plot_icesurface(
            grid=grid,  # ds_lake.sel(cycle_number=cycle).z
            grid_region=grid_region,
            diff_grid=ds_lake_diff.sel(cycle_number=cycle).z,
            diff_grid_region=diff_grid_region,
            track_points=df_lake[["x", "y", f"h_corr_{cycle}"]].dropna().to_numpy(),
            outline_points=outline_points,
            azimuth=azimuth,
            elevation=elevation,
            title=f"{context.region.name} at Cycle {cycle} ({time_sec})",
        )
        fig.savefig(
            f"figures/{context.placename}/dsm_{context.placename}_cycle_{cycle}.png"
        )

    return fig
Пример #15
0
def test_grdtrack_input_dataframe_and_ncfile():
    """
    Run grdtrack by passing in a pandas.DataFrame and netcdf file as inputs.
    """
    dataframe = load_ocean_ridge_points()
    ncfile = which("@earth_relief_01d", download="a")

    output = grdtrack(points=dataframe, grid=ncfile, newcolname="bathymetry")
    assert isinstance(output, pd.DataFrame)
    assert output.columns.to_list() == ["longitude", "latitude", "bathymetry"]
    npt.assert_allclose(output.iloc[0], [-32.2971, 37.4118, -1939.748245])

    return output
Пример #16
0
def test_grdtrack_input_csvfile_and_dataarray(dataarray, expected_array):
    """
    Run grdtrack by passing in a csvfile and xarray.DataArray as inputs.
    """
    with GMTTempFile() as tmpfile:
        output = grdtrack(points=POINTS_DATA,
                          grid=dataarray,
                          outfile=tmpfile.name)
        assert output is None  # check that output is None since outfile is set
        assert os.path.exists(
            path=tmpfile.name)  # check that outfile exists at path
        output = np.loadtxt(tmpfile.name)
        npt.assert_allclose(np.array(output), expected_array)
Пример #17
0
def test_grdtrack_input_csvfile_and_dataarray(dataarray, csvfile):
    """
    Run grdtrack by passing in a csvfile and xarray.DataArray as inputs.
    """
    try:
        output = grdtrack(points=csvfile, grid=dataarray, outfile=TEMP_TRACK)
        assert output is None  # check that output is None since outfile is set
        assert os.path.exists(path=TEMP_TRACK)  # check that outfile exists at path

        track = pd.read_csv(TEMP_TRACK, sep="\t", header=None, comment=">")
        npt.assert_allclose(track.iloc[0], [-110.9536, -42.2489, -2797.394987])
    finally:
        os.remove(path=TEMP_TRACK)

    return output
Пример #18
0
def test_grdtrack_input_csvfile_and_ncfile(csvfile, ncfile):
    """
    Run grdtrack by passing in a csvfile and netcdf file as inputs.
    """
    try:
        output = grdtrack(points=csvfile, grid=ncfile, outfile=TEMP_TRACK)
        assert output is None  # check that output is None since outfile is set
        assert os.path.exists(path=TEMP_TRACK)  # check that outfile exists at path

        track = pd.read_csv(TEMP_TRACK, sep="\t", header=None, comment=">")
        npt.assert_allclose(track.iloc[0], [-32.2971, 37.4118, -1939.748245])
    finally:
        os.remove(path=TEMP_TRACK)

    return output
Пример #19
0
def filter_vectors_to_land_only(region, elon, nlat, e, n):
    maskfile = pygmt.grdlandmask(region=region, spacing='10m', resolution='i');
    points, newelon, newnlat, newe, newn = [], [], [], [], [];
    for i in range(len(elon)):
        points.append(np.array([elon[i], nlat[i]]));   # build np array of points
    points = np.array(points);
    if len(points) == 0:
        return [], [], [], [];
    values = pygmt.grdtrack(points, maskfile);  # values is a pandas DataFrame
    for i, item in enumerate(values[2]):   # column 2 is the grdtrack output
        if item > 0.8:  # if grdtrack gives something on land
            newelon.append(elon[i]);
            newnlat.append(nlat[i]);
            newe.append(e[i]);
            newn.append(n[i]);
    return newelon, newnlat, newe, newn;
Пример #20
0
#     always_xy=True,
# )
#
# start_xy = reprj_func.transform(xx=start_lonlat[0], yy=start_lonlat[1])
# stop_xy = reprj_func.transform(xx=stop_lonlat[0], yy=stop_lonlat[1])
# start_stop_inc = f"{start_xy[0]}/{start_xy[1]}/{stop_xy[0]}/{stop_xy[1]}/+i125"
# print(start_stop_inc)

# %%
elevpoints = {}
# Get elevation (z) values
for name, grid in gridDict.items():
    elevpoints[name] = gmt.grdtrack(
        points=oibpoints[["x", "y"]],
        grid=grid,
        newcolname="elevation",
        R="/".join(str(r) for r in region),
        # E="-1573985/-470866/-993375/-464996+i250",
    )
    elevpoints[name] = elevpoints[name].dropna()
    elevpoints[name].x = elevpoints[name].x.astype(float)
    print(len(elevpoints[name]), name)
# Get roughness values
for name, grid in roughDict.items():
    roughness = gmt.grdtrack(
        points=oibpoints[["x", "y"]],
        grid=grid,
        newcolname="roughness",
        R="/".join(str(r) for r in region),
        # E=start_stop_inc,
    ).roughness
Пример #21
0
# - DeepBedMap3 grid (predicted from our [Super Resolution Generative Adversarial Network model](/srgan_train.ipynb))
# - CubicBedMap grid (interpolated from BEDMAP2 using a [bicubic spline algorithm](http://scikit-image.org/docs/dev/api/skimage.transform.html#skimage.transform.rescale))
# - Synthetic High Res grid (created by [Graham et al. 2017](https://doi.org/10.5194/essd-9-267-2017))
#
# References:
#
# - Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J., & Wobbe, F. (2013). Generic Mapping Tools: Improved Version Released. Eos, Transactions American Geophysical Union, 94(45), 409–410. https://doi.org/10.1002/2013EO450001
# - Wessel, P. (2010). Tools for analyzing intersecting tracks: The x2sys package. Computers & Geosciences, 36(3), 348–354. https://doi.org/10.1016/j.cageo.2009.05.009

# %%
tracks = [data_prep.ascii_to_xyz(pipeline_file=f"{pf}.json") for pf in test_filepaths]
points: pd.DataFrame = pd.concat(objs=tracks)  # concatenate all tracks into one table

# %%
df_groundtruth = gmt.grdtrack(
    points=points, grid=groundtruth, newcolname="z_interpolated"
)
# df_deepbedmap3 = gmt.grdtrack(
#     points=points, grid=deepbedmap3_grid, newcolname="z_interpolated"
# )
df_deepbedmap3 = gmt.grdtrack(
    points=points, grid="model/deepbedmap3.nc", newcolname="z_interpolated"
)
df_cubicbedmap = gmt.grdtrack(
    points=points, grid="model/cubicbedmap.nc", newcolname="z_interpolated"
)
df_synthetichr = gmt.grdtrack(
    points=points, grid="model/synthetichr.nc", newcolname="z_interpolated"
)

# %% [markdown]
Пример #22
0
    number_of_samples = 100000
    filin = '/home/sberton2/tmp/LDAM_8.GRD'  # '/home/sberton2/Works/NASA/Mercury_tides/aux/HDEM_64.GRD' #

    rng = np.random.default_rng()
    lon = rng.random((number_of_samples)) * 360.  # if grd lon is [0,360)
    lat = (rng.random(
        (number_of_samples)) * 2 - 1) * 90.  # if grd lat is [-90,90)

    if method == 'xarray':
        import xarray as xr
        import pyproj

        if filin.split('.')[-1] == 'GRD':  # to read grd/netcdf files
            z = get_demz_grd(filin, lon, lat)
        elif filin.split('.')[-1] == 'TIF':  # to read geotiffs usgs
            z = np.squeeze(get_demz_tiff(filin, lon, lat))

        out = pd.DataFrame([lon, lat, z], index=['lon', 'lat', 'z']).T

    elif method == 'pygmt':
        import pygmt  # needs GMT 6.1.1 installed, plus linking of GMTdir/lib64/libgmt.so to some general xovutil dir (see bottom of https://www.pygmt.org/dev/install.html)

        points = pd.DataFrame([lon, lat], index=['lon', 'lat']).T
        out = pygmt.grdtrack(points, filin, newcolname='z')

    print(out)

    end = time.time()
    print("## Reading/interpolation of", number_of_samples,
          "samples finished after", str(np.round(end - start, 2)), "sec!")
    exit()
Пример #23
0
diff_grid_region: np.ndarray = np.append(arr=grid_region[:4],
                                         values=z_diff_limits)

print(f"Elevation limits are: {z_limits}")

# %%
# 3D plots of gridded ice surface elevation over time
for cycle in tqdm.tqdm(iterable=cycles):
    time_nsec: pd.Timestamp = df_lake[f"utc_time_{cycle}"].to_pandas().mean()
    time_sec: str = np.datetime_as_string(arr=time_nsec.to_datetime64(),
                                          unit="s")

    grid = f"figures/{placename}/h_corr_{placename}_cycle_{cycle}.nc"
    points = pd.DataFrame(data=np.vstack(lake.geometry.boundary.coords.xy).T,
                          columns=("x", "y"))
    outline_points = pygmt.grdtrack(points=points, grid=grid, newcolname="z")
    outline_points["z"] = outline_points.z.fillna(
        value=outline_points.z.median())

    fig = deepicedrain.plot_icesurface(
        grid=grid,  # ds_lake.sel(cycle_number=cycle).z
        grid_region=grid_region,
        diff_grid=ds_lake_diff.sel(cycle_number=cycle).z,
        diff_grid_region=diff_grid_region,
        track_points=df_lake[["x", "y",
                              f"h_corr_{cycle}"]].dropna().as_matrix(),
        outline_points=outline_points,
        azimuth=157.5,  # 202.5  # 270
        elevation=45,  # 60
        title=f"{region.name} at Cycle {cycle} ({time_sec})",
    )
Пример #24
0
    I=250,
    G=f"Models/{bedname.lower()}_{z_attribute}.nc",
)

# %%
# Gridded plots, and transect plot of friction/velocity/rheologyB
grid = xr.open_dataarray(f"Models/{bedname.lower()}_{z_attribute}.nc")

pointXY = collections.namedtuple(typename="pointXY", field_names="x y")
pointA = pointXY(x=-1590_000, y=-99_000)
pointB = pointXY(x=-1580_000, y=-255_000)
points = pd.DataFrame(
    data=np.linspace(start=pointA, stop=pointB, num=50),
    columns=["x", "y"],
)
transect = pygmt.grdtrack(points=points, grid=grid, newcolname=z_attribute)

fig = pygmt.Figure()
# Plot 2D grid and transect line on map
pygmt.makecpt(
    cmap="hawaii",
    series=[z.min(), z.max(), (z.max() - z.min()) / 10],
    reverse=True,
    continuous=True,
)
with pygmt.config(FONT_TITLE="18p"):
    fig.grdimage(
        grid=grid,
        cmap=True,
        frame=["af", f'WSne+t"Mean {z_attribute}={grid.mean().item():.4e}"'],
        projection="X8c/12c",
Пример #25
0
    reverse=True,
    continuous=True,
)
with pygmt.clib.Session() as session:

    subplot = lambda args: session.call_module(module="subplot", args=args)
    # Begin subplot
    subplot(args="begin 2x3 -BWSne -Bxaf -Byaf -Fs10c/4c,14c -M0c/0.5c -SRl")

    # Plot transect line graph
    subplot(args=f"set 0,0")
    transectproj = "X32c/4c"
    _xyz = pd.concat(
        pygmt.grdtrack(
            points=points,
            grid=grid,
            newcolname=z_attr.varname,
        ) for grid in grids)
    fig.basemap(
        region=pygmt.info(table=_xyz[["x", z_attr.varname]],
                          per_column=True,
                          spacing=10),
        projection=transectproj,
        frame=[
            "af",
            f'WSne+t"{z_attr.varname.title().replace("_", " ")} ({z_attr.symbol}) at Pine Island Glacier"',
        ],
    )
    for bedname in ("DeepBedMap", "BedMachine"):
        grid = f"Models/{bedname.lower()}_{z_attr.varname}.nc"
        transect = pygmt.grdtrack(points=points,
def raster_topological_reconstruction(grid,
                                      topological_model,
                                      reconstruction_time,
                                      reverse=True,
                                      region=None,
                                      spacing=1.):
    """
    Generate a reconstructed raster based on a topological reconstruction
    
    By default, the operation will use the input raster to determine the extent and sampling
    of the output raster (Which would work for global grids).
    Optionally, a different region and sampling for the output grid can be specified.
    """
    coord_keys = [key for key in grid.coords.keys()]

    if 'lon' in coord_keys[0].lower():
        latitude_key = 1
        longitude_key = 0
    elif 'x' in coord_keys[0].lower():
        latitude_key = 1
        longitude_key = 0
    else:
        latitude_key = 0
        longitude_key = 1

    if region:
        coords = [('lat', np.arange(region[2], region[3] + spacing, spacing)),
                  ('lon', np.arange(region[0], region[1] + spacing, spacing))]
        XX, YY = np.meshgrid(
            np.arange(region[0], region[1] + spacing, spacing),
            np.arange(region[2], region[3] + spacing, spacing))
    else:
        coords = [('lat', grid.coords[coord_keys[latitude_key]].data),
                  ('lon', grid.coords[coord_keys[longitude_key]].data)]
        XX, YY = np.meshgrid(grid.coords[coord_keys[longitude_key]].data,
                             grid.coords[coord_keys[latitude_key]].data)

    geometry_points = [(lat, lon)
                       for lat, lon in zip(YY.flatten(), XX.flatten())]

    if reverse:
        pts, valid_index = topological_reconstruction(
            topological_model,
            geometry_points,
            0.,
            initial_time=reconstruction_time,
            oldest_time=reconstruction_time,
            return_inactive_points=True,
            deactivate_points=False)

        res = pygmt.grdtrack(grid=grid,
                             points=pd.DataFrame(data={
                                 'x': pts[1],
                                 'y': pts[0]
                             }),
                             newcolname='z')
        x = XX.flatten()[valid_index]
        y = YY.flatten()[valid_index]

        resg = xyz2grd(x, y, np.array(res['z']), XX, YY)

        reconstructed_raster = xr.DataArray(resg, coords=coords, name='z')

        return reconstructed_raster

    else:
        print('Forward reconstruction not yet implemented')
Пример #27
0
:class:`pandas.DataFrame` table where the first two columns are x and y (or longitude
and latitude). Note also that there is a ``newcolname`` parameter that will be used to
name the new column of values sampled from the grid.

Alternatively, a NetCDF file path can be passed to ``grid``. An ASCII file path can
also be accepted for ``points``. To save an output ASCII file, a file name argument
needs to be passed to the ``outfile`` parameter.
"""

import pygmt

# Load sample grid and point datasets
grid = pygmt.datasets.load_earth_relief()
points = pygmt.datasets.load_ocean_ridge_points()
# Sample the bathymetry along the world's ocean ridges at specified track points
track = pygmt.grdtrack(points=points, grid=grid, newcolname="bathymetry")

fig = pygmt.Figure()
# Plot the earth relief grid on Cylindrical Stereographic projection, masking land areas
fig.basemap(region="g", frame=True, projection="Cyl_stere/150/-20/15c")
fig.grdimage(grid=grid, cmap="gray")
fig.coast(land="#666666")
# Plot using circles (c) of 0.15 cm, the sampled bathymetry points
# Points are colored using elevation values (normalized for visual purposes)
fig.plot(
    x=track.longitude,
    y=track.latitude,
    style="c0.15c",
    cmap="terra",
    color=(track.bathymetry - track.bathymetry.mean()) /
    track.bathymetry.std(),
Пример #28
0
def test_grdtrack_without_outfile_setting(dataarray, dataframe):
    """
    Run grdtrack by not passing in outfile parameter setting.
    """
    with pytest.raises(GMTInvalidInput):
        grdtrack(points=dataframe, grid=dataarray)