Пример #1
0
def test_fair_heuristics():
    H = pg.PageRank(assume_immutability=True, normalization="symmetric")
    algorithms = {
        "FairO": lambda G, p, s: pg.Normalize(pg.AdHocFairness(H, method="O")).rank(G, sensitive=s),
        "FairB": lambda G, p, s: pg.Normalize()(pg.AdHocFairness("B").transform(H.rank(G, p), sensitive=s)),
        "LFPRN": lambda G, p, s: pg.Normalize()(pg.LFPR().rank(G, p, sensitive=s)),
        "LFPRP": lambda G, p, s: pg.Normalize()(pg.LFPR(redistributor="original").rank(G, p, sensitive=s)),
        "FairWalk": lambda G, p, s: pg.FairWalk(H).rank(G, p, sensitive=s)
    }
    import networkx as nx
    _, graph, groups = next(pg.load_datasets_multiple_communities(["bigraph"], graph_api=nx))
    # TODO: networx needed due to edge weighting by some algorithms
    labels = pg.to_signal(graph, groups[0])
    sensitive = pg.to_signal(graph, groups[1])
    for name, algorithm in algorithms.items():
        ranks = algorithm(graph, labels, sensitive)
        if name == "FairWalk":
            assert pg.pRule(sensitive)(ranks) > 0.6  # TODO: Check why fairwalk fails by that much and increase the limit.
        else:
            assert pg.pRule(sensitive)(ranks) > 0.98
    sensitive = 1 - sensitive.np
    for name, algorithm in algorithms.items():
        ranks = algorithm(graph, labels, sensitive)
        if name == "FairWalk":
            assert pg.pRule(sensitive)(ranks) > 0.6
        else:
            assert pg.pRule(sensitive)(ranks) > 0.98
Пример #2
0
def test_fair_heuristics():
    H = pg.PageRank(assume_immutability=True, normalization="symmetric")
    algorithms = {
        "FairO":
        lambda G, p, s: pg.Normalize(pg.AdHocFairness(H, method="O")).rank(
            G, sensitive=s),
        "FairB":
        lambda G, p, s: pg.Normalize()
        (pg.AdHocFairness("B").transform(H.rank(G, p), sensitive=s)),
        "FairWalk":
        lambda G, p, s: pg.FairWalk(H).rank(G, p, sensitive=s)
    }

    _, graph, groups = next(pg.load_datasets_multiple_communities(["bigraph"]))
    labels = pg.to_signal(graph, groups[0])
    sensitive = pg.to_signal(graph, groups[1])
    for algorithm in algorithms.values():
        ranks = algorithm(graph, labels, sensitive)
        assert pg.pRule(sensitive)(
            ranks
        ) > 0.6  # TODO: Check why fairwalk fails by that much and increase the limit.
    sensitive = 1 - sensitive.np
    for algorithm in algorithms.values():
        ranks = algorithm(graph, labels, sensitive)
        assert pg.pRule(sensitive)(ranks) > 0.6
Пример #3
0
def test_fair_personalizer():
    H = pg.PageRank(assume_immutability=True, normalization="symmetric")
    algorithms = {
        "FairPers":
        lambda G, p, s: pg.Normalize(
            pg.FairPersonalizer(H, error_type=pg.Mabs, max_residual=0)).rank(
                G, p, sensitive=s),
        "FairPers-C":
        lambda G, p, s: pg.Normalize(
            pg.FairPersonalizer(
                H, .80, pRule_weight=10, error_type=pg.Mabs, max_residual=0)).
        rank(G, p, sensitive=s),
        "FairPersSkew":
        lambda G, p, s: pg.Normalize(
            pg.FairPersonalizer(H, error_skewing=True, max_residual=0)).rank(
                G, p, sensitive=s),
        "FairPersSkew-C":
        lambda G, p, s: pg.Normalize(
            pg.FairPersonalizer(
                H, .80, error_skewing=True, pRule_weight=10, max_residual=0)
        ).rank(G, p, sensitive=s),
    }
    _, graph, groups = next(pg.load_datasets_multiple_communities(["bigraph"]))
    labels = pg.to_signal(graph, groups[0])
    sensitive = pg.to_signal(graph, groups[1])
    for algorithm in algorithms.values():
        ranks = algorithm(graph, labels, sensitive)
        assert pg.pRule(sensitive)(
            ranks
        ) > 0.79  # allow a leeway for generalization capabilities compared to 80%
Пример #4
0
    def rank(self, graph, personalization, sensitive, *args, **kwargs):
        original_ranks = self.ranker(graph,
                                     personalization,
                                     *args,
                                     sensitive=sensitive,
                                     **kwargs)
        base_ranks = original_ranks if self.ranker == self.base_ranker else self.base_ranker(
            graph, personalization, *args, **kwargs)
        training_objective = pg.AM()\
            .add(pg.L2(base_ranks), weight=-1.)\
            .add(pg.pRule(tf.cast(sensitive.np, tf.float32)), weight=10., max_val=0.8)

        with pg.Backend("tensorflow"):
            ranks_var = tf.Variable(pg.to_array(original_ranks.np))
            optimizer = tf.keras.optimizers.Adam(learning_rate=0.1)
            best_loss = float('inf')
            best_ranks = None
            for epoch in range(2000):
                with tf.GradientTape() as tape:
                    ranks = pg.to_signal(original_ranks, ranks_var)
                    loss = -training_objective(
                        ranks)  #+ 1.E-5*tf.reduce_sum(ranks_var*ranks_var)
                grads = tape.gradient(loss, [ranks_var])
                optimizer.apply_gradients(zip(grads, [ranks_var]))
                validation_loss = loss
                if validation_loss < best_loss:
                    patience = 100
                    best_ranks = ranks
                    best_loss = validation_loss
                patience -= 1
                if patience == 0:
                    break
        return best_ranks
Пример #5
0
    def train_model(self, graph, personalization, sensitive, *args, **kwargs):
        original_ranks = self.ranker(graph, personalization, *args, **kwargs)
        #pretrained_ranks = None if self.pretrainer is None else self.pretrainer(graph, personalization, *args, sensitive=sensitive, **kwargs)
        features = tf.concat([
            tf.reshape(personalization.np, (-1, 1)),
            tf.reshape(original_ranks.np, (-1, 1)),
            tf.reshape(sensitive.np, (-1, 1))
        ],
                             axis=1)
        training_objective = pg.AM()\
            .add(pg.L2(tf.cast(original_ranks.np, tf.float32)), weight=1.)\
            .add(pg.pRule(tf.cast(sensitive.np, tf.float32)), max_val=0.8, weight=-10.)
        model = self.model()
        with pg.Backend("tensorflow"):
            best_loss = float('inf')
            best_ranks = None
            optimizer = tf.keras.optimizers.Adam(learning_rate=0.01)

            #degrade = 1
            for epoch in range(5000):
                with tf.GradientTape() as tape:
                    personalization = pg.to_signal(personalization,
                                                   model(features))
                    #personalization.np = tf.nn.relu(personalization.np*2-1)
                    ranks = self.ranker(graph, personalization, *args,
                                        **kwargs)
                    loss = training_objective(ranks)
                    for var in model.trainable_variables:
                        loss = loss + 1.E-5 * tf.reduce_sum(var * var)
                    #loss = loss * degrade
                grads = tape.gradient(loss, model.trainable_variables)
                #degrade *= 0.9
                optimizer.apply_gradients(zip(grads,
                                              model.trainable_variables))
                validation_loss = training_objective(ranks)
                if validation_loss < best_loss:
                    patience = 10
                    best_ranks = ranks
                    best_loss = validation_loss
                    print("epoch", epoch, "loss", validation_loss, "prule",
                          pg.pRule(tf.cast(sensitive.np, tf.float32))(ranks))
                patience -= 1
                if patience == 0:
                    break
        return best_ranks
Пример #6
0
def test_edge_cases():
    assert pg.pRule([0])([0]) == 0
    assert pg.Cos([0])([0]) == 0
    with pytest.raises(Exception):
        pg.Measure()([0, 1, 0])
    with pytest.raises(Exception):
        pg.AUC([0, 0, 0])([0, 1, 0])
    with pytest.raises(Exception):
        pg.AUC([1, 1, 1])([0, 1, 0])
    with pytest.raises(Exception):
        pg.KLDivergence([0], exclude={"A": 1})([1])
    with pytest.raises(Exception):
        pg.Conductance(next(pg.load_datasets_graph(["graph5"])),
                       max_rank=0.5)([1, 1, 1, 1, 1])
    import networkx as nx
    for _ in supported_backends():
        assert pg.Conductance(nx.Graph())([]) == float(
            "inf")  # this is indeed correct in python
        assert pg.Density(nx.Graph())([]) == 0
        assert pg.Modularity(nx.Graph())([]) == 0
        assert pg.KLDivergence([0, 1, 0])([0, 1, 0]) == 0
        assert pg.MKLDivergence([0, 1, 0])([0, 1, 0]) == 0
        assert pg.KLDivergence([0])([-1]) == 0