def test_propagate_errors(): # This test is complex and hardly a unit test, but it is strong. # I believe it's better than a formal test. dt = 0.5 t = 6 * 3600 n_samples = int(t / dt) lat = np.full(n_samples, 50.0) lon = np.full(n_samples, 60.0) alt = np.zeros_like(lat) h = np.full(n_samples, 10.0) r = np.full(n_samples, -5.0) p = np.full(n_samples, 3.0) traj, gyro, accel = sim.from_position(dt, lat, lon, alt, h, p, r) gyro_bias = np.array([1e-8, -2e-8, 3e-8]) accel_bias = np.array([3e-3, -4e-3, 2e-3]) gyro += gyro_bias * dt accel += accel_bias * dt theta, dv = coning_sculling(gyro, accel) d_lat = 100 d_lon = -200 d_VE = 1 d_VN = -2 d_h = 0.01 d_p = -0.02 d_r = 0.03 lat0, lon0 = perturb_ll(traj.lat[0], traj.lon[0], d_lat, d_lon) VE0 = traj.VE[0] + d_VE VN0 = traj.VN[0] + d_VN h0 = traj.h[0] + d_h p0 = traj.p[0] + d_p r0 = traj.r[0] + d_r traj_c = integrate(dt, lat0, lon0, VE0, VN0, h0, p0, r0, theta, dv) error_true = traj_diff(traj_c, traj) error_linear = propagate_errors(dt, traj, d_lat, d_lon, d_VE, d_VN, d_h, d_p, d_r, gyro_bias, accel_bias) error_scale = np.mean(np.abs(error_true)) rel_diff = (error_linear - error_true) / error_scale assert_allclose(rel_diff.lat, 0, atol=0.1) assert_allclose(rel_diff.lon, 0, atol=0.1) assert_allclose(rel_diff.VE, 0, atol=0.1) assert_allclose(rel_diff.VN, 0, atol=0.1) assert_allclose(rel_diff.h, 0, atol=0.1) assert_allclose(rel_diff.p, 0, atol=0.1) assert_allclose(rel_diff.r, 0, atol=0.1)
theta_align = theta[:align_samples] theta_nav = theta[align_samples:] dv_align = dv[:align_samples] dv_nav = dv[align_samples:] from pyins.align import align_wahba (h0, p0, r0), P_align = align_wahba(dt, theta_align, dv_align, 12.915618) VE0 = 0 VN0 = 0 lat0 = 12.915618 lon0 = 77.615240 traj_real = integrate(dt, lat0, lon0, VE0, VN0, h0, p0, r0, theta_nav, dv_nav) traj_error = traj_diff(traj_real, gps_data) gps_data = pd.DataFrame(index=gps_data.index[::1]) gps_data['lat'] = df.latitude gps_data['lon'] = df.longitude gps_pos_sd = 10 from pyins.filt import LatLonObs gps_obs = LatLonObs(gps_data, gps_pos_sd) from pyins.filt import InertialSensor gyro_model = InertialSensor(bias=gyro_bias_sd, noise=gyro_noise) accel_model = InertialSensor(bias=accel_bias_sd, noise=accel_noise)
def test_FeedbackFilter(): dt = 0.9 traj = pd.DataFrame(index=np.arange(1 * 3600)) traj['lat'] = 50 traj['lon'] = 60 traj['VE'] = 0 traj['VN'] = 0 traj['h'] = 0 traj['p'] = 0 traj['r'] = 0 _, gyro, accel = sim.from_position(dt, traj.lat, traj.lon, np.zeros_like(traj.lat), h=traj.h, p=traj.p, r=traj.r) theta, dv = coning_sculling(gyro, accel) np.random.seed(0) obs_data = pd.DataFrame( index=traj.index[::10], data={ 'lat': traj.lat[::10], 'lon': traj.lon[::10] } ) obs_data['lat'], obs_data['lon'] = perturb_ll( obs_data.lat, obs_data.lon, 10 * np.random.randn(obs_data.shape[0]), 10 * np.random.randn(obs_data.shape[0])) obs = LatLonObs(obs_data, 10) f = FeedbackFilter(dt, 5, 1, 0.2, 0.05) d_lat = 5 d_lon = -3 d_VE = 1 d_VN = -1 d_h = 0.1 d_p = 0.03 d_r = -0.02 lat0, lon0 = perturb_ll(50, 60, d_lat, d_lon) integrator = Integrator(dt, lat0, lon0, d_VE, d_VN, d_h, d_p, d_r) res = f.run(integrator, theta, dv, observations=[obs]) error = traj_diff(res.traj, traj) error = error.iloc[3000:] assert_allclose(error.lat, 0, rtol=0, atol=10) assert_allclose(error.lon, 0, rtol=0, atol=10) assert_allclose(error.VE, 0, rtol=0, atol=1e-2) assert_allclose(error.VN, 0, rtol=0, atol=1e-2) assert_allclose(error.h, 0, rtol=0, atol=1.5e-3) assert_allclose(error.p, 0, rtol=0, atol=1e-4) assert_allclose(error.r, 0, rtol=0, atol=1e-4) assert_(np.all(np.abs(res.residuals[0] < 4))) res = f.run_smoother(integrator, theta, dv, [obs]) error = traj_diff(res.traj, traj) assert_allclose(error.lat, 0, rtol=0, atol=10) assert_allclose(error.lon, 0, rtol=0, atol=10) assert_allclose(error.VE, 0, rtol=0, atol=1e-2) assert_allclose(error.VN, 0, rtol=0, atol=1e-2) assert_allclose(error.h, 0, rtol=0, atol=1.5e-3) assert_allclose(error.p, 0, rtol=0, atol=1e-4) assert_allclose(error.r, 0, rtol=0, atol=1e-4) assert_(np.all(np.abs(res.residuals[0] < 4)))