Пример #1
0
def test_bicubic():
    grid = pyinterp.backends.xarray.Grid2D(xr.load_dataset(GRID).mss)

    lon = np.arange(-180, 180, 1) + 1 / 3.0
    lat = np.arange(-90, 90, 1) + 1 / 3.0
    x, y = np.meshgrid(lon, lat, indexing="ij")

    z = grid.bicubic(collections.OrderedDict(lon=x.flatten(), lat=y.flatten()))
    assert isinstance(z, np.ndarray)

    for fitting_model in [
            'linear', 'bicubic', 'polynomial', 'c_spline', 'c_spline_periodic',
            'akima', 'akima_periodic', 'steffen'
    ]:
        other = grid.bicubic(collections.OrderedDict(lon=x.flatten(),
                                                     lat=y.flatten()),
                             fitting_model=fitting_model)
        assert (z - other).mean() != 0

    with pytest.raises(ValueError):
        grid.bicubic(collections.OrderedDict(lon=x.flatten(), lat=y.flatten()),
                     bounds_error=True)

    with pytest.raises(ValueError):
        grid.bicubic(collections.OrderedDict(lon=x.flatten(), lat=y.flatten()),
                     bounds_error=True,
                     boundary="sym")

    x_axis = pyinterp.Axis(np.linspace(-180, 179, 360), is_circle=True)
    y_axis = pyinterp.Axis(np.linspace(-90, 90, 181), is_circle=False)
    z_axis = pyinterp.Axis(np.linspace(0, 10, 10), is_circle=False)
    matrix, _ = np.meshgrid(x_axis[:], y_axis[:])
    grid = pyinterp.Grid2D(x_axis, y_axis, matrix.T)

    assert isinstance(grid, pyinterp.Grid2D)
    with pytest.raises(ValueError):
        pyinterp.bicubic(grid, x.flatten(), y.flatten(), fitting_model='_')
    with pytest.raises(ValueError):
        pyinterp.bicubic(grid, x.flatten(), y.flatten(), boundary='_')
    grid = pyinterp.Grid2D(x_axis.flip(inplace=False), y_axis, matrix.T)
    with pytest.raises(ValueError):
        pyinterp.bicubic(grid, x.flatten(), y.flatten())

    grid = pyinterp.Grid2D(x_axis, y_axis.flip(), matrix.T)
    with pytest.raises(ValueError):
        pyinterp.bicubic(grid, x.flatten(), y.flatten())

    matrix, _, _ = np.meshgrid(x_axis[:], y_axis[:], z_axis[:])
    grid = pyinterp.Grid3D(x_axis, y_axis, z_axis, matrix.transpose(1, 0, 2))
    with pytest.raises(ValueError):
        pyinterp.bicubic(grid, x.flatten(), y.flatten())

    grid = pyinterp.backends.xarray.RegularGridInterpolator(
        xr.load_dataset(GRID).mss)
    assert grid.ndim == 2
    assert isinstance(grid.grid, pyinterp.backends.xarray.Grid2D)
    z = grid(collections.OrderedDict(lon=x.flatten(), lat=y.flatten()),
             method="bicubic",
             bicubic_kwargs=dict(nx=3, ny=3))
    assert isinstance(z, np.ndarray)
Пример #2
0
    def test_core_class_suffix(self):
        lon = pyinterp.Axis(np.arange(0, 360, 1), is_circle=True)
        lat = pyinterp.Axis(np.arange(-80, 80, 1), is_circle=False)
        for dtype in [
                "float64", "float32", "int64", "uint64", "int32", "uint32",
                "int16", "uint16", "int8", "uint8"
        ]:
            matrix, _ = np.meshgrid(lon[:], lat[:])
            self.assertIsInstance(
                pyinterp.Grid2D(lon, lat,
                                matrix.T.astype(dtype=getattr(np, dtype))),
                pyinterp.Grid2D)

        with self.assertRaises(ValueError):
            pyinterp.Grid2D(lon, lat, matrix.astype(np.complex))
Пример #3
0
    def test_gauss_seidel(self):
        grid = self._load()
        _, filled0 = pyinterp.fill.gauss_seidel(grid, num_threads=0)
        _, filled1 = pyinterp.fill.gauss_seidel(grid, num_threads=1)
        _, filled2 = pyinterp.fill.gauss_seidel(grid,
                                                first_guess='zero',
                                                num_threads=0)
        data = np.copy(grid.array)
        data[np.isnan(data)] = 0
        filled0[np.isnan(filled0)] = 0
        filled1[np.isnan(filled1)] = 0
        filled2[np.isnan(filled2)] = 0
        self.assertEqual((filled0 - filled1).mean(), 0)
        self.assertEqual(np.ma.fix_invalid(grid.array - filled1).mean(), 0)
        self.assertNotEqual((data - filled1).mean(), 0)
        self.assertNotEqual((filled2 - filled1).mean(), 0)

        with self.assertRaises(ValueError):
            pyinterp.fill.gauss_seidel(grid, '_')

        x_axis = pyinterp.Axis(np.linspace(-180, 180, 10), is_circle=True)
        y_axis = pyinterp.Axis(np.linspace(-90, 90, 10), is_circle=False)
        data = np.random.rand(len(x_axis), len(y_axis))
        grid = pyinterp.Grid2D(x_axis, y_axis, data)
        _, filled0 = pyinterp.fill.gauss_seidel(grid, num_threads=0)
        self.assertIsInstance(filled0, np.ndarray)
Пример #4
0
def test_gauss_seidel():
    grid = load_data()
    _, filled0 = pyinterp.fill.gauss_seidel(grid, num_threads=0)
    _, filled1 = pyinterp.fill.gauss_seidel(grid, num_threads=1)
    _, filled2 = pyinterp.fill.gauss_seidel(grid,
                                            first_guess='zero',
                                            num_threads=0)
    data = np.copy(grid.array)
    data[np.isnan(data)] = 0
    filled0[np.isnan(filled0)] = 0
    filled1[np.isnan(filled1)] = 0
    filled2[np.isnan(filled2)] = 0
    assert (filled0 - filled1).mean() == 0
    assert np.ma.fix_invalid(grid.array - filled1).mean() == 0
    assert (data - filled1).mean() != 0
    assert (filled2 - filled1).mean() != 0

    with pytest.raises(ValueError):
        pyinterp.fill.gauss_seidel(grid, '_')

    x_axis = pyinterp.Axis(np.linspace(-180, 180, 10), is_circle=True)
    y_axis = pyinterp.Axis(np.linspace(-90, 90, 10), is_circle=False)
    data = np.random.rand(len(x_axis), len(y_axis))
    grid = pyinterp.Grid2D(x_axis, y_axis, data)
    _, filled0 = pyinterp.fill.gauss_seidel(grid, num_threads=0)
    assert isinstance(filled0, np.ndarray)
Пример #5
0
 def _build_interpolator(self):
     """
         build interpolation function
     """
     x_axis = pyinterp.Axis(self._x, is_circle=True)
     y_axis = pyinterp.Axis(self._y)
     self._z[self._z.mask] = float("nan")
     self._grid = pyinterp.Grid2D(x_axis, y_axis, self._z.data)
Пример #6
0
    def test_core_variate_interpolator(self):
        lon = pyinterp.Axis(np.arange(0, 360, 1), is_circle=True)
        lat = pyinterp.Axis(np.arange(-80, 80, 1), is_circle=False)
        matrix, _ = np.meshgrid(lon[:], lat[:])

        grid = pyinterp.Grid2D(lon, lat, matrix.T)

        with self.assertRaises(TypeError):
            pyinterp.grid._core_variate_interpolator(None, "_")

        with self.assertRaises(ValueError):
            pyinterp.grid._core_variate_interpolator(grid, '_')
Пример #7
0
def reproj_with_manual_grid(da, x_coords, y_coords, new_grid):

    x_axis = pyinterp.Axis(da.x.values)
    y_axis = pyinterp.Axis(da.y.values)

    grid = pyinterp.Grid2D(x_axis, y_axis, da.data.T)

    reproj_data = (pyinterp
                   .bivariate(grid, x_coords, y_coords)
                   .reshape((len(new_grid['x_coords']), len(new_grid['y_coords'])))
                  )

    return reproj_data
Пример #8
0
def test_biavariate():
    grid = pyinterp.backends.xarray.Grid2D(xr.load_dataset(GRID).mss)

    assert isinstance(grid, pyinterp.backends.xarray.Grid2D)
    assert isinstance(grid, pyinterp.Grid2D)
    other = pickle.loads(pickle.dumps(grid))
    assert isinstance(other, pyinterp.backends.xarray.Grid2D)
    assert isinstance(grid, pyinterp.Grid2D)

    assert isinstance(grid.x, pyinterp.Axis)
    assert isinstance(grid.y, pyinterp.Axis)
    assert isinstance(grid.array, np.ndarray)

    lon = np.arange(-180, 180, 1) + 1 / 3.0
    lat = np.arange(-90, 90, 1) + 1 / 3.0
    x, y = np.meshgrid(lon, lat, indexing="ij")

    z = grid.bivariate(
        collections.OrderedDict(lon=x.flatten(), lat=y.flatten()))
    assert isinstance(z, np.ndarray)

    z = grid.bivariate(collections.OrderedDict(lon=x.flatten(),
                                               lat=y.flatten()),
                       interpolator="nearest")
    assert isinstance(z, np.ndarray)

    z = grid.bivariate(collections.OrderedDict(lon=x.flatten(),
                                               lat=y.flatten()),
                       interpolator="inverse_distance_weighting")
    assert isinstance(z, np.ndarray)

    grid = pyinterp.backends.xarray.Grid2D(xr.load_dataset(GRID).mss,
                                           geodetic=False)

    assert isinstance(grid, pyinterp.backends.xarray.Grid2D)
    w = grid.bivariate(collections.OrderedDict(lon=x.flatten(),
                                               lat=y.flatten()),
                       interpolator="inverse_distance_weighting")
    assert np.ma.fix_invalid(z).mean() != np.ma.fix_invalid(w).mean()

    with pytest.raises(TypeError):
        grid.bivariate((x.flatten(), y.flatten()))

    with pytest.raises(IndexError):
        grid.bivariate(
            collections.OrderedDict(lon=x.flatten(),
                                    lat=y.flatten(),
                                    time=np.arange(3)))

    with pytest.raises(IndexError):
        grid.bivariate(
            collections.OrderedDict(longitude=x.flatten(), lat=y.flatten()))

    with pytest.raises(ValueError):
        grid.bivariate(collections.OrderedDict(lon=x.flatten(),
                                               lat=y.flatten()),
                       bounds_error=True)

    lon = pyinterp.Axis(np.linspace(0, 360, 100), is_circle=True)
    lat = pyinterp.Axis(np.linspace(-80, 80, 50), is_circle=False)
    array, _ = np.meshgrid(lon[:], lat[:])

    with pytest.raises(ValueError):
        pyinterp.Grid2D(lon, lat, array)

    grid = pyinterp.Grid2D(lon, lat, array.T)

    assert isinstance(grid, pyinterp.Grid2D)
    assert isinstance(str(grid), str)

    with pytest.raises(ValueError):
        pyinterp.Grid2D(lon, lat, array, increasing_axes='_')

    grid = pyinterp.backends.xarray.RegularGridInterpolator(
        xr.load_dataset(GRID).mss)
    z = grid(collections.OrderedDict(lon=x.flatten(), lat=y.flatten()),
             method="bilinear")
    assert isinstance(z, np.ndarray)