Пример #1
0
def standardizing_transform(
    batch_t: Tensor, min_std: float = 1e-14
) -> transforms.AffineTransform:
    """Builds standardizing transform

    Args:
        batch_t: Batched tensor from which mean and std deviation (across
            first dimension) are computed.
        min_std:  Minimum value of the standard deviation to use when z-scoring to
            avoid division by zero.

    Returns:
        Affine transform for z-scoring
    """

    is_valid_t, *_ = handle_invalid_x(batch_t, True)

    t_mean = torch.mean(batch_t[is_valid_t], dim=0)
    t_std = torch.std(batch_t[is_valid_t], dim=0)
    t_std[t_std < min_std] = min_std

    return transforms.AffineTransform(shift=-t_mean / t_std, scale=1 / t_std)
Пример #2
0
def standardizing_transform(
        batch_t: Tensor,
        structured_dims: bool = False,
        min_std: float = 1e-14) -> transforms.AffineTransform:
    """Builds standardizing transform

    Args:
        batch_t: Batched tensor from which mean and std deviation (across
            first dimension) are computed.
        structured_dim: Whether data dimensions are structured (e.g., time-series,
            images), which requires computing mean and std per sample first before
            aggregating over samples for a single standardization mean and std for the
            batch, or independent (default), which z-scores dimensions independently.
        min_std:  Minimum value of the standard deviation to use when z-scoring to
            avoid division by zero.

    Returns:
        Affine transform for z-scoring
    """

    is_valid_t, *_ = handle_invalid_x(batch_t, True)

    if structured_dims:
        # Structured data so compute a single mean over all dimensions
        # equivalent to taking mean over per-sample mean, i.e.,
        # `torch.mean(torch.mean(.., dim=1))`.
        t_mean = torch.mean(batch_t[is_valid_t])
        # Compute std per-sample first.
        sample_std = torch.std(batch_t[is_valid_t], dim=1)
        sample_std[sample_std < min_std] = min_std
        # Average over all samples for batch std.
        t_std = torch.mean(sample_std)
    else:
        t_mean = torch.mean(batch_t[is_valid_t], dim=0)
        t_std = torch.std(batch_t[is_valid_t], dim=0)
        t_std[t_std < min_std] = min_std

    return transforms.AffineTransform(shift=-t_mean / t_std, scale=1 / t_std)
Пример #3
0
def posterior_nn(
    model: str,
    prior: torch.distributions.Distribution,
    context: torch.Tensor,
    embedding: Optional[torch.nn.Module] = None,
    hidden_features: int = 50,
    mdn_num_components: int = 20,
    made_num_mixture_components: int = 10,
    made_num_blocks: int = 4,
    flow_num_transforms: int = 5,
) -> torch.nn.Module:
    """Neural posterior density estimator

    Args:
        model: Model, one of maf / mdn / made / nsf
        prior: Prior distribution
        context: Observation
        embedding: Embedding network
        hidden_features: For all, number of hidden features
        mdn_num_components: For MDNs only, number of components
        made_num_mixture_components: For MADEs only, number of mixture components
        made_num_blocks: For MADEs only, number of blocks
        flow_num_transforms: For flows only, number of transforms

    Returns:
        Neural network
    """
    mean, std = (prior.mean, prior.stddev)
    standardizing_transform = transforms.AffineTransform(
        shift=-mean / std, scale=1 / std
    )

    parameter_dim = prior.sample([1]).shape[1]

    context = utils.torchutils.atleast_2d(context)
    observation_dim = torch.tensor([context.shape[1:]])

    if model == "mdn":
        neural_net = MultivariateGaussianMDN(
            features=parameter_dim,
            context_features=observation_dim,
            hidden_features=hidden_features,
            hidden_net=nn.Sequential(
                nn.Linear(observation_dim, hidden_features),
                nn.ReLU(),
                nn.Dropout(p=0.0),
                nn.Linear(hidden_features, hidden_features),
                nn.ReLU(),
                nn.Linear(hidden_features, hidden_features),
                nn.ReLU(),
            ),
            num_components=mdn_num_components,
            custom_initialization=True,
        )

    elif model == "made":
        transform = standardizing_transform
        distribution = distributions_.MADEMoG(
            features=parameter_dim,
            hidden_features=hidden_features,
            context_features=observation_dim,
            num_blocks=made_num_blocks,
            num_mixture_components=made_num_mixture_components,
            use_residual_blocks=True,
            random_mask=False,
            activation=torch.relu,
            dropout_probability=0.0,
            use_batch_norm=False,
            custom_initialization=True,
        )
        neural_net = flows.Flow(transform, distribution, embedding)

    elif model == "maf":
        transform = transforms.CompositeTransform(
            [
                transforms.CompositeTransform(
                    [
                        transforms.MaskedAffineAutoregressiveTransform(
                            features=parameter_dim,
                            hidden_features=hidden_features,
                            context_features=observation_dim,
                            num_blocks=2,
                            use_residual_blocks=False,
                            random_mask=False,
                            activation=torch.tanh,
                            dropout_probability=0.0,
                            use_batch_norm=True,
                        ),
                        transforms.RandomPermutation(features=parameter_dim),
                    ]
                )
                for _ in range(flow_num_transforms)
            ]
        )

        transform = transforms.CompositeTransform([standardizing_transform, transform,])

        distribution = distributions_.StandardNormal((parameter_dim,))
        neural_net = flows.Flow(transform, distribution, embedding)

    elif model == "nsf":
        transform = transforms.CompositeTransform(
            [
                transforms.CompositeTransform(
                    [
                        transforms.PiecewiseRationalQuadraticCouplingTransform(
                            mask=create_alternating_binary_mask(
                                features=parameter_dim, even=(i % 2 == 0)
                            ),
                            transform_net_create_fn=lambda in_features, out_features: nets.ResidualNet(
                                in_features=in_features,
                                out_features=out_features,
                                hidden_features=hidden_features,
                                context_features=observation_dim,
                                num_blocks=2,
                                activation=torch.relu,
                                dropout_probability=0.0,
                                use_batch_norm=False,
                            ),
                            num_bins=10,
                            tails="linear",
                            tail_bound=3.0,
                            apply_unconditional_transform=False,
                        ),
                        transforms.LULinear(parameter_dim, identity_init=True),
                    ]
                )
                for i in range(flow_num_transforms)
            ]
        )

        transform = transforms.CompositeTransform([standardizing_transform, transform,])

        distribution = distributions_.StandardNormal((parameter_dim,))
        neural_net = flows.Flow(transform, distribution, embedding)

    else:
        raise ValueError

    return neural_net