Пример #1
0
def gauss(x, p, mode='eval'):
    """Gaussian defined by amplitide

    Function:
       :math:`f(x) = k + m*x + p_2 \exp\left(\\frac{-(x - p_0)^2}{2p_1^2}\\right)`

    """
    try:
        if mode == 'eval':
            cent=p[0];wid=p[1];amp=p[2];const=p[3];slope=p[4]
            #out = const + amp * np.exp(-1.0 * (x - cent)**2 / (2 * wid**2))
            #Inserted the 0.5* because we want FWHM out, not HWHM
            #out = const + slope*x + amp * np.exp(-1.0 * (x - cent)**2 / (2 * (0.5*wid)**2))
            conversion =2.0*np.sqrt(2.0*np.log(2))      #Hutchings et al. Introduction to the characterisation of residual stress by neutron diffraction.2005. Page 159 
            #conversion = 2.0
            out = const + slope*x + amp * np.exp(-1.0 * (x - cent)**2 / (2 * (wid/conversion)**2))
        elif mode == 'params':
            out = ['cent', 'sigma', 'amp', 'const', 'slope']
        elif mode == 'name':
            out = "Gaussian"
        elif mode == 'guess':
            g = fitfuncs.peakguess(x, p)
            out = [g[0], g[1] / (4 * np.log(2)), g[3], g[4], g[5]]
        else:
            out = []
    except:
        out = [0,0,0,0,0]

    return out
def simulated_annealing_plot(problem, values_for_schedule):
    """[Figure 4.5] CAUTION: This differs from the pseudocode as it
    returns a state instead of a Node."""
    schedule = exp_schedule(values_for_schedule[0], values_for_schedule[1],
                            values_for_schedule[2])
    x = list()
    y = list()
    current = Node(problem.initial)
    for t in range(sys.maxsize):
        T = schedule(t)
        if T == 0:
            plt.scatter(x, y)
            plt.show()
            return current.state
        neighbors = current.expand(problem)
        if not neighbors:
            plt.scatter(x, y)
            plt.show()
            return current.state
        next_choice = random.choice(neighbors)
        delta_e = problem.value(next_choice.state) - problem.value(
            current.state)
        y.append(problem.value(current.state))
        x.append(t)
        if delta_e > 0 or probability(np.exp(delta_e / T)):
            current = next_choice
def reflection(xvals, p):
    #position=p[0];  intensity=p[1]; slit=p[2];  stth=p[3];  background=p[4];  thickness=p[5];  absorption=p[6]
    x0 = p[0]
    i0 = p[1]
    w = p[2]
    theta = p[3]
    ib = p[4]
    thick = p[5]
    u = p[6]
    th = np.deg2rad(theta)
    p0 = w * np.sin(th) / np.sin(2 * th)
    out = []
    for x in xvals:
        if x < (x0 - p0):
            val = ib
        elif ((x >= (x0 - p0)) and (x < x0)):
            val = i0 * ((x - x0 + p0) / u) - i0 * (np.sin(th) /
                                                   (2 * u * u)) * (1 - np.exp(
                                                       (-2 * u / np.sin(th)) *
                                                       (x - x0 + p0))) + ib
        elif ((x >= x0) and (x < (x0 + p0))):
            val = i0 * (np.sin(th) / (2 * u * u)) * (np.exp(
                (-2 * u / np.sin(th)) * (x - x0 + p0)) - 2 * np.exp(
                    (-2 * u / np.sin(th)) *
                    (x - x0)) + 1) + i0 * ((x0 + p0 - x) / u) + ib
        elif (x >= (x0 + p0)):
            val = i0 * np.sin(th) / (
                2 * u * u) * (np.exp(-2 * u * (x - x0 + p0) / np.sin(th)) -
                              2 * np.exp(-2 * u * (x - x0) / np.sin(th)) +
                              np.exp(-2 * u * (x - x0 - p0) / np.sin(th))) + ib
        out = out + [val]
    return np.array(out)
Пример #4
0
def func(x, a1, a2, a3):
    return a1 * x + a2 / (1 + np.exp(-a3 * x)) - a2 / 2
def reflection1(xvals, parms):
    #position=p[0];  intensity=p[1]; slit=p[2];  stth=p[3];  background=p[4];  thickness=p[5];  absorption=p[6]
    x0 = parms[0]
    i0 = parms[1]
    w = parms[2]
    theta = parms[3]
    ib = parms[4]
    thick = parms[5]
    u = parms[6]
    th = np.deg2rad(theta)
    p = w * np.sin(th)
    Atot = w * w / np.sin(2.0 * th)
    out = []
    ni = 5
    irng = np.array(range(1, ni + 1))

    for x in xvals:
        if x < (x0 - p):
            val = ib
        elif ((x0 - p) < x and x0 > x):
            l1 = x - (x0 - p)
            nrleft = int(np.ceil(l1 / (2 * p) * ni))
            if nrleft < 1: nrleft = 1
            irngleft = np.array(range(1, nrleft + 1))
            dl1 = l1 / float(nrleft)
            dl = irngleft * dl1
            triA = dl * dl / np.tan(th)  #triangle areas
            secA = [triA[0]
                    ] + [triA[i] - triA[i - 1]
                         for i in range(1, nrleft)]  #section areas
            secA = np.array(secA)
            m1 = np.linspace(
                x0 - p + dl1 / 2.0, x - dl1 / 2.0, nrleft
            )  #section midpoint position - path length calculated from this
            plen = np.abs(2 * m1 / np.sin(th))
            val = ib + np.sum(i0 * secA * np.exp(-u * plen))

        elif (x0 <= x) and (x0 + p >= x):
            l1 = p
            nrleft = int(np.ceil(l1 / (2 * p) * ni))
            if nrleft < 1: nrleft = 1
            irngleft = np.array(range(1, nrleft + 1))
            dl1left = l1 / float(nrleft)
            dlleft = irngleft * dl1left
            triAleft = dlleft * dlleft / np.tan(th)  #triangle areas
            secAleft = [triAleft[0]] + [
                triAleft[i] - triAleft[i - 1] for i in range(1, nrleft)
            ]  #section areas
            secAleft = np.array(secAleft)
            m1left = np.linspace(x0 - p + dl1left / 2.0, x0 - dl1left / 2.0,
                                 nrleft) + (x - x0)
            plenleft = np.abs(2 * m1left / np.sin(th))
            valleft = np.sum(i0 * secAleft * np.exp(-u * plenleft))

            l2 = x - x0
            nrright = int(np.ceil(x - x0 / (2 * p) * ni))
            if nrright < 1: nrright = 1
            irngright = np.array(range(1, nrright + 1))
            dl1right = l2 / float(nrright)
            dlright = p - np.append(0.0, dl1right * irngright)
            triAright = dlright * dlright / np.tan(th)
            secAright = [
                triAright[i] - triAright[i + 1] for i in range(nrright)
            ]
            secAright = np.array(secAright)
            m1right = np.linspace(x - x0 - dl1right / 2.0, dl1right / 2.0,
                                  nrright)
            plenright = np.abs(2 * m1right / np.sin(th))
            valright = np.sum(i0 * secAright * np.exp(-u * plenright))

            val = ib + valleft + valright

        elif (x > x0 + p):
            l1 = p
            #nrleft = int(np.ceil(l1/(x-(x0-p))*ni));
            nrleft = int(np.ceil(l1 / (2 * p) * ni))
            if nrleft < 1: nrleft = 1
            irngleft = np.array(range(1, nrleft + 1))
            dl1left = l1 / float(nrleft)
            dlleft = irngleft * dl1left
            triAleft = dlleft * dlleft / np.tan(th)  #triangle areas
            secAleft = [triAleft[0]] + [
                triAleft[i] - triAleft[i - 1] for i in range(1, nrleft)
            ]  #section areas
            secAleft = np.array(secAleft)
            m1left = np.linspace(x0 - p + dl1left / 2.0, x0 - dl1left / 2.0,
                                 nrleft) + (x - x0)
            plenleft = np.abs(2 * m1left / np.sin(th))
            valleft = np.sum(i0 * secAleft * np.exp(-u * plenleft))

            l2 = p
            nrright = int(np.ceil(l2 / (2 * p) * ni))
            if nrright < 1: nrright = 1
            irngright = np.array(range(1, nrright + 1))
            dl1right = l2 / float(nrright)
            dlright = p - np.append(0.0, dl1right * irngright)
            triAright = dlright * dlright / np.tan(th)
            secAright = [
                triAright[i] - triAright[i + 1] for i in range(nrright)
            ]
            secAright = np.array(secAright)
            m1right = np.linspace(dlright[0] - dl1right / 2.0, dlright[-1] +
                                  dl1right / 2.0, nrright) + (x - (x0 + p))
            plenright = np.abs(2 * m1right / np.sin(th))
            valright = np.sum(i0 * secAright * np.exp(-u * plenright))

            val = ib + valleft + valright

        out = out + [val]
    return np.array(out)
Пример #6
0
def sigmoid(z):
    #e的-z次方
    # g(z) = 1/(1+e^(-z))
    #z=W^tX
    return (1.0 / (1 + np.exp(-z)))
    # time with actual spiking activity
    spike_times = [timeline[i + 1] for i, dv in enumerate(dVs) if dv > 0]
    time_first_spike, time_last_spike = spike_times[0], spike_times[-1]
    active_time = int(time_last_spike - time_first_spike)  # ms
    # print("First spike occured at {}, last spike at {}".format(time_first_spike, time_last_spike))

    # mean spike height
    mean_decrease = np.mean([dv for dv in dVs if dv < 0])
    dv_mean = np.mean([dv - mean_decrease for dv in dVs if dv > 0
                       ])  # mean decrease per timestep needs to be added
    # because it exists even if there is a spike
    print("Mean Spike Height: {} mV".format(dv_mean))

    # expected spike height
    exp_tc = np.exp(float(-ts) / tau_m)  # time constant multiplier
    dv_expected = (tau_m / cm) * weight * (1.0 - exp_tc
                                           )  # equation for pulse input
    print("Expected Spike Height: {} mV".format(dv_expected))

    # Difference
    discrepancy = dv_expected - dv_mean
    print("Discrepancy between mean and expected: {} mV".format(discrepancy))
    # TODO Open Question: Is the discrepancy small enough and can the above formula be applied?

    # Use the mean spike height to count the spikes
    spike_height = dv_mean
    spike_count = 0
    spikes = [dv for dv in dVs if dv > 0]

    for spike in spikes:
def exp_schedule(k, lam, limit):
    """One possible schedule function for simulated annealing"""
    return lambda t: (k * np.exp(-lam * t) if t < limit else 0)