# Xtv0 = calculate2dTV(X, 0) # assert abs(X - Xtv0).mean() <= 1e-4, abs(X - Xtv0).mean() lambdas = np.linspace(0.1, 1, 50) Xtv_2 = calculate2dTVPath(X, lambdas) print "Done calculating Regpath Version." # Get the first round Xtv_1 = np.empty( (lambdas.size, X.shape[0], X.shape[1]) ) for i, lm in enumerate(lambdas): print "Calculating %d/%d (lambda = %1.5f)" % ((i + 1), len(lambdas), lm) Xtv_1[i,:,:] = calculate2dTV(X, lm) print "Done calculating indivdual models." def plotRegPath(a, Xtv): xc, yc = 0, 0 col = [] ymin, ymax = 0,0 for xi, yi in product(range(0, Xtv.shape[1]), range(0, Xtv.shape[2])): y = Xtv[:,xi, yi]
#image_file = "benchmarks/images/sanity.png" image_file = "benchmarks/images/truffles-small.png" image_file = "benchmarks/images/branches.png" Xo = imread(image_file) if not Xo.size: raise IOError("Error loading image %s." % image_file) print "Image file %s loaded." % image_file X = (Xo.mean(axis=2) / Xo.max()) X -= X.mean() X /= X.std() Xtv = calculate2dTV(X, lm) Xtv -= X.mean() Xtv /= X.std() f = figure() a = f.add_subplot(121) a.imshow(X, interpolation='nearest') a = f.add_subplot(122) a.imshow(Xtv, interpolation='nearest') show()