Пример #1
0
    def __init__(self):
        """ gets a small batch of data
            sets up an S3C model and learns on the data
            creates an expression for the log likelihood of the data
        """

        self.tol = 1e-5

        #dataset = serial.load('${GOODFELI_TMP}/cifar10_preprocessed_train_1K.pkl')

        X = np.random.RandomState([1, 2, 3]).randn(1000, 108)
        #dataset.get_batch_design(1000)
        #X = X[:,0:2]
        #warnings.warn('hack')
        #X[0,0] = 1.
        #X[0,1] = -1.
        m, D = X.shape
        N = 300

        self.model = S3C(
            nvis=D,
            #disable_W_update = 1,
            nhid=N,
            irange=.5,
            init_bias_hid=-.1,
            init_B=1.,
            min_B=1e-8,
            max_B=1e8,
            tied_B=1,
            e_step=E_Step_Scan(
                #h_new_coeff_schedule = [ ],
                h_new_coeff_schedule=[.01]),
            init_alpha=1.,
            min_alpha=1e-8,
            max_alpha=1e8,
            init_mu=1.,
            m_step=Grad_M_Step(learning_rate=1.0),
        )

        #warnings.warn('hack')
        #W = self.model.W.get_value()
        #W[0,0] = 1.
        #W[1,0] = 1.
        #self.model.W.set_value(W)

        self.orig_params = self.model.get_param_values()

        model = self.model
        self.mf_obs = model.e_step.infer(X)

        self.stats = SufficientStatistics.from_observations(
            needed_stats=model.m_step.needed_stats(), V=X, **self.mf_obs)

        self.prob = self.model.expected_log_prob_vhs(
            self.stats, H_hat=self.mf_obs['H_hat'], S_hat=self.mf_obs['S_hat'])
        self.X = X
        self.m = m
        self.D = D
        self.N = N
Пример #2
0
    def __init__(self):
        """ gets a small batch of data
            sets up an S3C model and learns on the data
            creates an expression for the log likelihood of the data
        """

        self.tol = 1e-5

        #dataset = serial.load('${GOODFELI_TMP}/cifar10_preprocessed_train_1K.pkl')

        X = np.random.RandomState([1,2,3]).randn(1000,108)
        #dataset.get_batch_design(1000)
        #X = X[:,0:2]
        #warnings.warn('hack')
        #X[0,0] = 1.
        #X[0,1] = -1.
        m, D = X.shape
        N = 300

        self.model = S3C(nvis = D,
                #disable_W_update = 1,
                         nhid = N,
                         irange = .5,
                         init_bias_hid = -.1,
                         init_B = 1.,
                         min_B = 1e-8,
                         max_B = 1e8,
                         tied_B = 1,
                         e_step = E_Step_Scan(
                             #h_new_coeff_schedule = [ ],
                             h_new_coeff_schedule = [ .01 ]
                         ),
                         init_alpha = 1.,
                         min_alpha = 1e-8, max_alpha = 1e8,
                         init_mu = 1.,
                         m_step = Grad_M_Step( learning_rate = 1.0 ),
                        )

        #warnings.warn('hack')
        #W = self.model.W.get_value()
        #W[0,0] = 1.
        #W[1,0] = 1.
        #self.model.W.set_value(W)

        self.orig_params = self.model.get_param_values()

        model = self.model
        self.mf_obs = model.e_step.infer(X)

        self.stats = SufficientStatistics.from_observations(needed_stats =
                model.m_step.needed_stats(), V =X,
                ** self.mf_obs)

        self.prob = self.model.expected_log_prob_vhs( self.stats , H_hat = self.mf_obs['H_hat'], S_hat = self.mf_obs['S_hat'])
        self.X = X
        self.m = m
        self.D = D
        self.N = N
Пример #3
0
    def __init__(self):
        """ gets a small batch of data
            sets up an S3C model and learns on the data
            creates an expression for the log likelihood of the data
        """

        # We also have to change the value of config.floatX in __init__.
        self.prev_floatX = config.floatX
        config.floatX = 'float64'

        try:
            self.tol = 1e-5

            if config.mode in ["DebugMode", "DEBUG_MODE"]:
                X = np.random.RandomState([1, 2, 3]).randn(30, 108)
                m, D = X.shape
                N = 10
            else:
                X = np.random.RandomState([1, 2, 3]).randn(1000, 108)
                m, D = X.shape
                N = 300

            self.model = S3C(nvis = D,
                             nhid = N,
                             irange = .5,
                             init_bias_hid = -.1,
                             init_B = 1.,
                             min_B = 1e-8,
                             max_B = 1e8,
                             tied_B = 1,
                             e_step = E_Step_Scan(
                                 h_new_coeff_schedule = [ .01 ]
                             ),
                             init_alpha = 1.,
                             min_alpha = 1e-8, max_alpha = 1e8,
                             init_mu = 1.,
                             m_step = Grad_M_Step( learning_rate = 1.0 ),
                            )

            self.orig_params = self.model.get_param_values()

            model = self.model
            self.mf_obs = model.e_step.infer(X)

            self.stats = SufficientStatistics.from_observations(needed_stats =
                    model.m_step.needed_stats(), V =X,
                    ** self.mf_obs)

            self.prob = self.model.expected_log_prob_vhs( self.stats , H_hat = self.mf_obs['H_hat'], S_hat = self.mf_obs['S_hat'])
            self.X = X
            self.m = m
            self.D = D
            self.N = N

        finally:
            config.floatX = self.prev_floatX
Пример #4
0
e_step.register_model(model)

print 'loading data'
data = np.load(data_path)
m,n = data.shape

print 'batch_size: ',batch_size_str
batch_size = int(batch_size_str)
assert m % batch_size == 0

print 'building energy functional expression'
V = T.matrix()
obs = model.get_hidden_obs(V)

needed_stats = S3C.energy_functional_needed_stats()
stats = SufficientStatistics.from_observations(needed_stats = needed_stats, V = V, ** obs)

energy_functional = model.energy_functional_batch( V =V, ** obs)
assert len(energy_functional.type.broadcastable) == 1

print 'compiling energy functional theano function'
f = function([V],energy_functional)


print 'computing energy functional values'
out = np.zeros((m,),dtype='float32')
times = []

for i in xrange(0,m,batch_size):
    print '\t',i
    t1 = time.time()
Пример #5
0
    param = sharedX(model.e_step.h_new_coeff_schedule[i], name='h' + str(i))
    model.e_step.h_new_coeff_schedule[i] = param
    params.append(param)

for i in xrange(len(model.e_step.s_new_coeff_schedule)):
    param = sharedX(model.e_step.s_new_coeff_schedule[i], name='s' + str(i))
    model.e_step.s_new_coeff_schedule[i] = param
    params.append(param)

param = sharedX(model.e_step.rho, name='rho')
model.e_step.rho = param
#params.append(param)

obs = model.e_step.variational_inference(V)
stats = SufficientStatistics.from_observations(needed_stats=needed_stats,
                                               V=V,
                                               **obs)
obj = model.em_functional(stats=stats,
                          H_hat=obs['H_hat'],
                          S_hat=obs['S_hat'],
                          var_s0_hat=obs['var_s0_hat'],
                          var_s1_hat=obs['var_s1_hat'])

grads = T.grad(obj, params)

updates = {}

for param, grad in zip(params, grads):
    updates[param] = T.clip(param + learning_rate * grad, 1e-7, 1. - 1e-7)

print 'compiling function...'
Пример #6
0
assert len(trunc_kl.type.broadcastable) == 0

print 'compiling function...'
from theano import function

G = [
    sharedX(np.zeros((batch_size, rbm.nhid), dtype='float32'))
    for rbm in model.dbm.rbms
]
H = sharedX(np.zeros((batch_size, model.s3c.nhid), dtype='float32'))
S = sharedX(np.zeros((batch_size, model.s3c.nhid), dtype='float32'))

new_stats = SufficientStatistics.from_observations(
    needed_stats=needed_stats,
    V=V,
    H_hat=H,
    S_hat=S,
    var_s0_hat=obs['var_s0_hat'],
    var_s1_hat=obs['var_s1_hat'])

obj = model.inference_procedure.truncated_KL(
    V, {
        "H_hat": H,
        "S_hat": S,
        "var_s0_hat": obs['var_s0_hat'],
        "var_s1_hat": obs['var_s1_hat'],
        "G_hat": G
    })

grad_G = [T.grad(obj, G_elem) for G_elem in G]
grad_H = T.grad(obj, H)
Пример #7
0
learning_rate = float(sys.argv[5])

print 'defining em functional...'
import theano.tensor as T

V = T.matrix("V")
model.make_pseudoparams()
obs = model.e_step.variational_inference(V)

from pylearn2.models.s3c import S3C

needed_stats = S3C.expected_log_prob_vhs_needed_stats()

from pylearn2.models.s3c import SufficientStatistics

stats = SufficientStatistics.from_observations( needed_stats = needed_stats, V = V, ** obs )
em_functional = model.em_functional( stats = stats, H_hat = obs['H_hat'], S_hat = obs['S_hat'], var_s0_hat = obs['var_s0_hat'], var_s1_hat = obs['var_s1_hat'])
assert len(em_functional.type.broadcastable) == 0

print 'compiling function...'
from theano import function

H = sharedX(np.zeros((batch_size, model.nhid), dtype='float32'))
S = sharedX(np.zeros((batch_size, model.nhid), dtype='float32'))


new_stats = SufficientStatistics.from_observations( needed_stats = needed_stats, V = V, H_hat = H, S_hat = S,
            var_s0_hat = obs['var_s0_hat'], var_s1_hat = obs['var_s1_hat'])

obj = model.em_functional(stats = new_stats, H_hat = H, S_hat = S, var_s0_hat = obs['var_s0_hat'], var_s1_hat = obs['var_s1_hat'])
Пример #8
0
    def __init__(self, model):
        """ model must be a PDDBM or S3C model """

        self.verbose = False
        batch_size = 87
        model._test_batch_size = batch_size

        self.model = model

        pddbm = hasattr(model,'dbm')


        if not pddbm:
            #hack s3c model to follow pddbm interface
            model.inference_procedure = model.e_step
            has_labels = False
        else:
            has_labels = model.dbm.num_classes > 0


        V = T.matrix("V")
        if has_labels:
            Y = T.matrix("Y")
        else:
            Y = None

        if config.compute_test_value != 'off':
            V.tag.test_value = np.cast[V.type.dtype](model.get_input_space().get_origin_batch(batch_size))

        self.model.make_pseudoparams()

        obs = model.inference_procedure.infer(V,Y)

        obs['H_hat'] = T.clip(obs['H_hat'],1e-7,1.-1e-7)
        if pddbm:
            obs['G_hat'] = tuple([ T.clip(elem,1e-7,1.-1e-7) for elem in obs['G_hat']  ])


        needed_stats = S3C.expected_log_prob_vhs_needed_stats()

        trunc_kl = model.inference_procedure.truncated_KL(V, obs = obs, Y = Y).mean()

        assert len(trunc_kl.type.broadcastable) == 0

        if pddbm:
            G = [ sharedX(np.zeros((batch_size, rbm.nhid), dtype='float32')) for rbm in model.dbm.rbms ]
            h_dim = model.s3c.nhid
        else:
            h_dim = model.nhid
        H = sharedX(np.zeros((batch_size, h_dim), dtype='float32'))
        S = sharedX(np.zeros((batch_size, h_dim), dtype='float32'))

        updates = { H : obs['H_hat'], S : obs['S_hat'] }

        if pddbm:
            for G_elem, G_hat_elem in zip(G, obs['G_hat']):
                updates[G_elem] = G_hat_elem

        inputs = [ V ]
        if has_labels:
            inputs.append(Y)

        if self.verbose:
            print 'batch gradient class compiling init function'
        self.init = function(inputs, trunc_kl,  updates = updates )
        if self.verbose:
            print 'done'




        new_stats = SufficientStatistics.from_observations( needed_stats = needed_stats, V = V, H_hat = H, S_hat = S,
                    var_s0_hat = obs['var_s0_hat'], var_s1_hat = obs['var_s1_hat'])


        obs = {
                "H_hat" : H,
                "S_hat" : S,
                "var_s0_hat" : obs['var_s0_hat'],
                "var_s1_hat" : obs['var_s1_hat'],
                }

        if pddbm:
            obs['G_hat'] = G

        obj = self.model.inference_procedure.truncated_KL( V, obs = obs, Y = Y ).mean()

        if pddbm:
            grad_G_sym = [ T.grad(obj, G_elem) for G_elem in G ]
        grad_H_sym = T.grad(obj,H)
        grad_S_sym = T.grad(obj,S)


        grad_H = sharedX( H.get_value())
        grad_S = sharedX( S.get_value())

        updates = { grad_H : grad_H_sym, grad_S : grad_S_sym }

        if pddbm:
            grad_G = [ sharedX( G_elem.get_value())  for G_elem in G ]
            for grad_G_elem, grad_G_sym_elem in zip(grad_G,grad_G_sym):
                updates[grad_G_elem] = grad_G_sym_elem

        if self.verbose:
            print 'batch gradient class compiling gradient function'
        self.compute_grad = function(inputs, updates = updates )
        if self.verbose:
            print 'done'



        if self.verbose:
            print 'batch gradient class compiling objective function'
        self.obj = function(inputs, obj)
        if self.verbose:
            print 'done'

        self.S = S
        self.H = H
        self.grad_S = grad_S
        self.grad_H = grad_H
        if pddbm:
            self.G = G
            self.grad_G = grad_G
        self.pddbm = pddbm
        self.has_labels = has_labels
Пример #9
0
    def __init__(self, model):
        """ model must be a PDDBM or S3C model """

        self.verbose = False
        batch_size = 87
        model._test_batch_size = batch_size

        self.model = model

        pddbm = hasattr(model,'dbm')


        if not pddbm:
            #hack s3c model to follow pddbm interface
            model.inference_procedure = model.e_step
            has_labels = False
        else:
            has_labels = model.dbm.num_classes > 0


        V = T.matrix("V")
        if has_labels:
            Y = T.matrix("Y")
        else:
            Y = None

        if config.compute_test_value != 'off':
            V.tag.test_value = np.cast[V.type.dtype](model.get_input_space().get_origin_batch(batch_size))

        self.model.make_pseudoparams()

        obs = {}
        for key in model.inference_procedure.hidden_obs:
            obs[key] = model.inference_procedure.hidden_obs[key]

        obs['H_hat'] = T.clip(obs['H_hat'],1e-7,1.-1e-7)
        if pddbm:
            obs['G_hat'] = tuple([ T.clip(elem,1e-7,1.-1e-7) for elem in obs['G_hat']  ])


        needed_stats = S3C.expected_log_prob_vhs_needed_stats()

        trunc_kl = model.inference_procedure.truncated_KL(V,  obs, Y).mean()

        assert len(trunc_kl.type.broadcastable) == 0

        if pddbm:
            G = model.inference_procedure.hidden_obs['G_hat']
            h_dim = model.s3c.nhid
        else:
            h_dim = model.nhid
        H = model.inference_procedure.hidden_obs['H_hat']
        S = model.inference_procedure.hidden_obs['H_hat']


        inputs = [ V ]
        if has_labels:
            inputs.append(Y)

        if self.verbose:
            print 'batch gradient class compiling init function'
        self.init_kl = function(inputs, trunc_kl)
        if self.verbose:
            print 'done'




        new_stats = SufficientStatistics.from_observations( needed_stats = needed_stats, V = V, H_hat = H, S_hat = S,
                    var_s0_hat = obs['var_s0_hat'], var_s1_hat = obs['var_s1_hat'])


        #obs = {
        #        "H_hat" : H,
        #        "S_hat" : S,
        #        "var_s0_hat" : obs['var_s0_hat'],
        #        "var_s1_hat" : obs['var_s1_hat'],
        #        }

        if pddbm:
            obs['G_hat'] = G

        obj = self.model.inference_procedure.truncated_KL( V, obs, Y ).mean()

        if pddbm:
            grad_G_sym = [ T.grad(obj, G_elem) for G_elem in G ]
        grad_H_sym = T.grad(obj,H)
        grad_S_sym = T.grad(obj,S)


        grad_H = sharedX( H.get_value())
        grad_S = sharedX( S.get_value())

        updates = { grad_H : grad_H_sym, grad_S : grad_S_sym }

        if pddbm:
            grad_G = [ sharedX( G_elem.get_value())  for G_elem in G ]
            for grad_G_elem, grad_G_sym_elem in zip(grad_G,grad_G_sym):
                updates[grad_G_elem] = grad_G_sym_elem

        if self.verbose:
            print 'batch gradient class compiling gradient function'
        self.compute_grad = function(inputs, updates = updates )
        if self.verbose:
            print 'done'



        if self.verbose:
            print 'batch gradient class compiling objective function'
        self.obj = function(inputs, obj)
        if self.verbose:
            print 'done'

        self.S = S
        self.H = H
        self.grad_S = grad_S
        self.grad_H = grad_H
        if pddbm:
            self.G = G
            self.grad_G = grad_G
        self.pddbm = pddbm
        self.has_labels = has_labels